

بسم الله الرحمن الرحيم

-Cardon - Cardon - Ca

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

بعض الوثائق

الأصلية تالفة

بالرسالة صفحات

لم ترد بالأصل

EFFECT OF ANGLES AND SIDES ON STRENGTHENING GEODETIC NETWORKS

B1081.

THESIS
Submitted to Faculty of Engineering
Shoubra - Zagazig University

FOR

The Degree of Master of Science In Surveying

BY

Eng. Manal Atif Abd EL Rhim EL Habashy

B. Sc. (Shoubra Faculty of Engineering. Banha Branch - Zagazig University 1989)

Under Supervision of

Prof. Dr. Saad Zaki Bolbol Prof. of Surveying and Geodesy Head of Surveying Department of Shoubra Faculty of Engineering, Banha Branch – zagazig University

Prof. Dr. Mahmoud Mohamed Hamed Dean of Faculty of Engineering "Shoubra" Prof. of Surveying and

Photogrametry

Dr. Youssef Abu EL-Abbas Youssef Lecturer of Surveying and Geodesy

Zagazig University

2001

Abstract

Surveying is very important for determine the position of points on the earth's surface. This is done through a geodetic network which is depending maily on the linear measurements (base line) and the angular measurements (angles). The accuracy of any surveying work is depending on the accuracy of linear and angular measurements. So, in this thesis, the effect of the value of lines and angles on each other and their effects on the final coordinates of points are studded. If the value of angles and distance are small then there is a problem in calculation, which is known in surveying ill geometry. All cases of ill geometry are studded to be known even the measurements are taken using the new technology of instruments.

ACKNOWLEDGMENT

A deep grateful and appreciation for a continuous advising and supervision step by step through the thesis goes to **Prof. Dr. Saad Bolbol.**

I wish to express my sincere appreciation to

Dr. Mahmoud Mohamed Hamed for the great help

and kind caring all along the thesis

A really heart thankful to **Dr. Youssef Abu EL- Abbus** for giving all the facilities and opportunity for the completion of this thesis.

TABLE OF CONTENTS

	Page
ABSTRACT	J
ACKNOWLEDGEMENTS	II
TABLE OF CONTENTS	Ш
LIST OF TABLE	
LIST OF FIGURE	
CHAPTER	
CHAPTER (1)	
TRAVERSES	
Introduction	1
1-1 Purpose Of Traverse.	1
1-2 Types Of Traverse	2
1-2-1 Closed Traverse	3
1-2-2 Connected Traverse	3
1-2-3 Open traverse	5
1-3 Order Classification of traverse	8
1-4 Traverse checking	10
1-4-1 Closed Traverse	10
a) Angular Measurements	10
b) Linear Measurements	11
1-4-3 Precision Of Angular And Linear Measurements	11
1-5 Traverse Computations	13
1-5-1 Consecutive And Independent Coordinates	13
1-5-2 Adjustment of Closing Error In Closed Traverse	. 15

	Page
1-5-2-1 Angular Error	17
1-5-2-2 Error In Bearing	17
1-5-3 Balancing The Traverse	
a) Bowditch's Method	18
b) Transit Method	19
CHAPTER (2)	
THE EFFECT OF ERROR IN AZIMUTH AND SIDE ON MEASURING TRAVERSE	
Introduction	20
A. Effect of error in azimuth on the calculated coordinates	20
B. The effect of error in length on E, N with azimuth free of error	24
1) The line (\overline{AB}) measured as one unit, and the azimuth of	
AB (α_{AB}) is error free	
2) The line (\overline{AB}) measured in several parts	49
- At error in azimuth with length free of error	49
- At error in length with azimuth free of error	51
CHAPTER (3)	
THE EFFECT OF BOTH ANGLES AND	
LENGTHS ON EACH OTHER	
Introduction	
I - Ill geometry case	53
Firstly, A study to show the effect of angles on length	
was done through the following cases	53
Case (1): Data with free error	53
Case (2): Data with error	
- Effect of error in angles on side calculation	54

	Page
a- By using sine rule	54
b- By using cosine rule	55
Secondly, A study to show the effect of error in length of	
sides on the angle was done through the following cases:	
Case (1): data without error	
Case (2): data with error	69
a - by using sin rule	69
b - by using cosine rule	70
II – Equilateral (normal case)	87
A- The effect of error in angle on the length of side.	87
a - by using sin rule	88
b - by using cosine rule	89
B- The effect of error in measuring length of side	
on value of angle	91
a - by using sin rule	91
b - by using cosine rule	92
CHAPTER (4)	
THE PRACTICAL APPLICATION OF ILL GEOMETRY IN TRIANGULATION	
Introduction	94
Triangulation	94
4-1 The Framework of a Geodetic Survey	94
4-2 Horizontal Geodetic Control	96
4-2-1 Classification of Horizontal Control Networks	96
4-2-2 Standards of Accuracy of Horizontal Control	96

•

Page

CHAPTER (5)

MODERN EQUIPMENT AND TECHNIQUES IN ESTABLISHING HORIZONTAL CONTROL NETWORK.

Introduction	104
5-1 Electromagnetic Distance Measurement (EDM)	104
5–1-1 History view for (EDM)	104
5-1-2 Types of Electromagnetic Distance Measuring	
(EDM)	106
5-1-2-1 EDM Using Microwave	106
5-1-2-2 EDM Using Infra-red Radiation	107
5-1-2-3 EDM Using Visible Light	108
5-1-3 Accuracy of EDM	109
5-2 History of Total Station	111
5-2-1 'Add-on' EDM	111
5-2-2 Accuracy of Total station	112
5-2-3 Sources of Error	113
5-3 History of Satellite positioning systems	115
5-3-1 The global positioning system (GPS)	118
5-3-1-1 GPS system	118
a- The User Segment	119
b- The Control Segment	119
c- The Space Segment	120
5-3-2 The Technique of GPS	121
5-3-2-1 Standard Positioning Service (SPS)	121
5-3-2-2 Precise Positioning Service (PPS)	122
5-3-3 Accuracy of GPS	123
A-User Range Estimate	123
B- Dilution of Precision	123
5-4 Impact of GPS on Horizontal Control Network	124
additional GPS-Information	126
5-4-2 Three-Dimensional-Solution	128
5-4-3 Two—Dimensional—Solution	129

	Page
5-4-4 One-Dimensional-Solution	130
5-5 Control Network Accuracy	130
5-5-1 Horizontal Accuracy	130
5-5-2 Vertical Accuracy	131
5-6 Sources of Error	131
5-7 Practical application of GPS will depend on	132
CHAPTER (6)	
ANALYSIS AND RECOMMENDATIONS.	
6-1 Results and conclusion	133
For Chapter (2)	133
For Chapter (3)	134
For Chapter (4)	135
6-2 Recommendation	136
REFERENCES	138
APPENDIX A	141

LIST OF TABLES

CHAPTER (1)		Page
	TRAVERSES	
Table (1-1)	Order Classification of traverse	9
Table (1-2)	the precision of traverse according to the purpose to be used	12
01115777		
CHAPTER (2)		
	THE EFFECT OF ERROR IN AZIMUTH	
	AND SIDE ON MEASURING TRAVERSE	
Table (2-1)	The line (\overline{AB}) measured as one unit at error in azimuth with the length free and error in length with azimuth free	26
Table (2-2)	The effect of error (5") in azimuth from 0° to 180° with different lengths	48
Table (2-3)	The line (\overline{AB}) measured in several parts at error in azimuth with length free	50
CHAPTER (3)		
	THE EFFECT OF BOTH ANGLES AND	
	LENGTHS ON EACH OTHER	
Table (3-1)	The effect of error in angle (\hat{A}) on side (c) by using sin rule	54
Table (3-2)	The effect of error in angle (\hat{A}) on side (c) by using cosine rule	55
Table (3-3)	The effect angle (\hat{A}) on side (b) by using sin rule	56

Table (3-4)	The effect angle (\hat{A}) on side (b) by using cosine rule	57
Table (3-5)	The effect of angle (\hat{C}) on side (a) by using sin rule	58
Table (3-6)	The effect of angle $(\hat{\mathcal{E}})$ on side (a) by using cosine rule	59
Table (3-7)	The effect of angle (\hat{C}) on side (b) by using sin rule	60
Table (3-8)	The effect of angle (\hat{C}) on side (b) by using cosine rule	61
Table (3-9)	The effect angle (\hat{B}) on side (a) by using sin rule	62
Table (3-10)	The effect angle (\hat{B}) on side (a) by using cosine rule	63
Table (3-11)	The effect of angle (\hat{B}) on side (c) by using sin rule	64
Table (3-12)	The effect of angle (\hat{B}) on side (c) by using cosine rule	65
Table (3-13)	The effect of side (b) on side (\hat{A}) by using sin rule	69
Table (3-14)	The effect of side (b) on side (\hat{A}) by using cosine rule	70
Table (3-15)	The effect of error in side (c) on angle by using sin rule	72
Table (3-16)	The effect of error in side (c) on angle A by using cosine rule	73
Table (3-17)	The effect of side (a) on the angle (B) by using sin rule	75
Table (3-18)	The effect of side (a) on the angle (B) by using cosine rule	76
Table (3-19)		78