

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / هناء محمد علي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

		4534		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(m) (m)		\$	ملاحظات:
		حامعتهت		
	since	1992	1.53	

بركات وتكنولوجياراه

النشاط المضاد للبكتيريا للبروبيوتك والبكتيريوفاج مع تعيين دور البروبيوتك في تحسين اضطرابات التمثيل الغذائي

رسالة مقدمة للحصول على درجة الدكتوراة في فلسفة العلوم في الميكروبيولوجي من منى محمود حسني مهدي ماجستير الميكروبيولوجي- كلية العلوم- جامعة الزقازيق (٢٠١٥ م)

تحت إشراف

أ.د. يحيى أحمد الظواهري أستاذ الميكروبيولوجي قسم النبات والميكروبيولوجي- كلية العلوم جامعة الزقازيق

د. وفاء فاروق محمد إستشاري مساعد الميكروبيولوجي مستشفي جامعة عين شمس التخصصي

أ.د. هالة محمد رمضان أبوشادي

أستاذ البكتيريا الطبية قسم الميكروبيولوجي- كلية العلوم جامعة عين شمس

أ.د. أحمد عبد الرحمن عسكورة

أستاذ الميكروبيولوجي قسم النبات والميكروبيولوجي- كلية العلوم جامعة الزقازيق

د. إيناس على الحسيني

أستاذ مساعد الفسيولوجي قسم علم الحيوان- كلية العلوم جامعة عين شمس

> قسم الميكروبيولوجي كلية العلوم جامعة عين شمس

اسم الطالبة : منى محمود حسنى مهدى

عنوان الرسالة : النشاط المضاد للبكتيريا للبروبيوتك والبكتريوفاج مع تعيين دور البروبيوتك في تحسين اضطرابات التمثيل الغذائي

الدرجة العلمية : درجة دكتوراه الفلسفة في العلوم في الميكروبيولوجي

لجنة الإشراف

ا.د. / هالة محمد رمضان أبوشادي

أستاذ الميكروبيولوجي (البكتيريا الطبية) – قسم الميكروبيولوجي – كلية العلوم - جامعة عين شمس

ا.د. / يحيي احمد الظواهري

أستاذ الميكروبيولوجي - كلية العلوم - جامعة الزقازيق

ا.د. / احمد عبد الرحمن عسكورة

أستاذ الميكروبيولوجي - كلية العلوم - جامعة الزقازيق

د. / وفاء فاروق محمد

استشاري مساعد الميكروبيولوجي - مستشفى جامعة عين شمس التخصصي

د. / ايناس على الحسيني

أستاذ مساعد الفسيولوجي - قسم علم الحيوان - كلية العلوم - جامعة عين شمس

لجنة المناقشة

ا.د. / محمد عثمان عبد المنعم

أستاذ ورئيس قسم النبات والميكروبيولوجي - كلية العلوم - جامعة بنها

ا.د. / عبد الله محمد امين على مرواد

أستاذ الامراض المشتركة - كلية الطب البيطري - جامعة الزقازيق

ا.د. / هالة محمد رمضان أبوشادي

أستاذ الميكروبيولوجي (البكتيريا الطبية) – قسم الميكروبيولوجي – كلية العلوم - جامعة عين شمس

ا.د. / احمد عبد الرحمن عسكورة

أستاذ الميكروبيولوجي - كلية العلوم - جامعة الزقازيق

الدراسات العليا

تاريخ المناقشة: ٢٠٢/٣/٢٨

ختم الاجازة:

أجيزت الرسالة بتاريخ: / ٢٠٢٢

مو افقة مجلس الكلية

7.77/ /

موافقة مجلس الجامعة

7.77/ /

النشاط المضاد للبكتيريا للبروبيوتك والبكتريوفاج مع تعيين دور البروبيوتك في تحسين اضطرابات التمثيل الغذائي

اسم الطالبة : مني محمود حسني مهدي

الدرجة العلمية : دكتوراة الفلسفة في العلوم في الميكروبيولوجي

القسم التابع له : الميكروبيولوجي

اسم الكلية : العلوم

الجامعة : عين شمس

سنة التخرج : ٢٠٠٦

سنة المنح : ٢٠٢٢

نلر دنسر

أبدأ بشكر الله عز وجل واتقدم بخالص الشكر والتقدير الي الأساتذة المشرفين علي هذا العمل حتي يظهر بالصورة اللائقة، خالص الامتنان لدعمهم ومجهودهم المبذول ومساندتهم ودقتهم للوصول بالعمل الي النتيجة المشرفة.

ا.د. / هالة محمد رمضان أبوشادي

أستاذ الميكروبيولوجي (البكتيريا الطبية) - قسم الميكروبيولوجي - كلية العلوم - جامعة عين شمس

ا.د. / يحيى احمد الظواهرى

أستاذ الميكروبيولوجي - كلية العلوم - جامعة الزقازيق

ا.د. / احمد عبد الرحمن عسكورة

أستاذ الميكروبيولوجي - كلية العلوم - جامعة الزقازيق

د. / وفاء فاروق محمد

استشاري مساعد الميكروبيولوجي - مستشفي جامعة عين شمس التخصصي

د. / ايناس على الحسيني

أستاذ مساعد الفسيولوجي – قسم علم الحيوان – كلية العلوم – جامعة عين شمس كما أتقدم بجزيل الشكر لكل من مد يد العون والمساعدة لإنجاز هذا العمل وكل التقدير لوالدي ووالدتي واخوتي علي ما قدموه من دعم وتشجيع طوال فترة الرسالة

مني فترو بعيني

Antibacterial activity of probiotics and bacteriophages with detection of the role of probiotics in metabolic disorders improvement

A Thesis Submitted for the Ph.D. Degree in Microbiology

Presented by

Mona Mahmoud Hosny Mahdy

Master of Microbiology (2015) Faculty of Science, Zagazig University

Under the supervision of

Prof. Dr.

Hala M. Abu- Shady

Professor of Microbiology Microbiology department Faculty of Science Ain Shams University

Prof. Dr.

Ahmed A. Askora

Professor of Microbiology Botany & Microbiology department Faculty of Science Zagazig University Prof. Dr.

Yehia A. El- Zawahry

Professor of Microbiology
Botany & Microbiology department
Faculty of Science
Zagazig University

Dr.

Wafaa F. Mohamed

Assistant consultant of Microbiology Ain Shams University specialized Hospital

Dr.

Enas A. El-Hussieny

Assistant professor of Physiology Zoology department Faculty of Science Ain Shams University

Microbiology department Faculty of Science Ain Shams University 2022

Approval Sheet

Name: Mona Mahmoud Hosny Mahdy

Title: Antibacterial activity of probiotics and bacteriophages with detection of the role of

probiotics in metabolic disorders improvement

Degree: Ph. D in Microbiology

This thesis for Ph. D degree has been supervised by:

Prof. Dr. Hala M. Abu-Shady

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain-Shams University

Prof. Dr. Yehia A. El-Zawahry

Professor of Microbiology, Botany & Microbiology Department, Faculty of Science, Zagazig University

Prof. Dr. Ahmed A. Askora

Professor of Microbiology, Botany & Microbiology Department, Faculty of Science, Zagazig University

Dr. Wafaa F. Mohamed

Assistant consultant of Microbiology, Ain-Shams University Specialized Hospital

Dr. Enas A. El-Hussieny

Associate Professor of Physiology, Zoology Department, Faculty of Science, Ain-Shams University

This thesis for Ph. D Degree has been approved by:

Prof. Dr. Mohamed Othman A. Moneam

Professor of Microbiology, Microbiology & Botany Department, Faculty of Science, Banha University

Prof. Dr. Abdallah M. A. A. Merwad

Professor of Zoonoses, Zoonoses Department, Faculty of Veterinary Medicine, Zagazig University

Prof. Dr. Hala M. Abu-Shady

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain-Shams University

Prof. Dr. Ahmed A. Askora

Professor of Microbiology, Botany& Microbiology Department, Faculty of Science, Zagazig University

Date of examination: 28/3/2022

Approval Date: / /2022

University Council Approved

قال تعالى :

"ومَا أوتِيتُم مِّنَ العِلْم إلاَّ قُلِيلاً"

سورة الإسراء: (٥٨)

ACKNOWLEDGEMENT

Praise and thanks to **ALLAH SUBHANAHU WATA'ALA** the most merciful for guiding, helping and giving me the strength to accomplish this work.

My profound gratitude and sincere appreciation to *Prof. Hala M. Abu-Shady*, Professor of Microbiology, Microbiology department, Faculty of Science, Ain Shams University for suggesting the problem, supervising my thesis, solving all the problems I had to face, guidance, encouragement, constructive criticism, the revision of this dissertation and the great support to pursue this thesis. Great honor working under her kind supervision.

I wish to express my sincere gratitude and deep appreciation to *Prof. Yehia El- Zawahry*, Professor of Microbiology, Botany & Microbiology department, Faculty of Science, Zagazig University for his supervision, guidance, valuable advice, encouragement and efforts and patience in revision of the manuscript of this thesis.

I would like to offer my sincere and deep thanks to *Prof. Ahmed A. Askora*, Professor of Microbiology, Botany & Microbiology department, Faculty of Science, Zagazig University, for helping, solving all the problems I had to face, direct supervision on the experimental part, guidance, encouragement and unlimited help.

I would like also to express my sincere gratitude, deep and unlimited thanks to *Dr. Wafaa F. Mohamed*, Assistant consultant of Microbiology, Ain Shams university specialized hospital and *Dr Enas A. El-Hussieny*, Assistant professor of physiology, Zoology department, Ain Shams university for helping, direct supervision on the experimental part, solving all the problems I had to face in the experimental part, valuable advices, guidance, encouragement and unlimited helps during the course investigation.

The studies presented in this thesis were carried out under sponsorship of Microbiology Department, and in this regard, *Prof. Yousreya shetaia*, Professor of Microbiology and Head of Microbiology Department, Faculty of Science, Ain Shams University is gratefully acknowledged for her encouragement and support to pursue this thesis.

My sincere thanks to my *Family* for all the support, Thanks will also extend to all members of Botany Department, Faculty of Science, Ain-Shams University for assisting me during studies. *Mona Mahmoud*

CONTENTS

Subject	
List of abbreviations	· V
List of tables	
List of figures	
Abstract	xiv
I- INTRODUCTION	1
Aim of the work	5
II- REVIEW OF LITERATURE	9
2.1. Diabetic Foot infections (DFIs):	9
2.2. Pseudomonas aeruginosa	14
2.3. Probiotics	19
2.3.1. Probiotics and gut microbiota	22
2.3.2. Anti-pathogenic activity of probiotics	25
2.3.2.1. Production of antimicrobial substances	29
2.3.2.2. Colonization resistance and competitive	31
Exclusion	31
2.3.2.3. Intestinal barrier function	33
2.3.2.4. Immunomodulation	
2.3.3. Probiotics and metabolic disorders	35
2.3.3.1. Anti-obesity activity of probiotics	40
2.3.3.2. Anti-diabetic activities of probiotics	43
2.3.3.3. Probiotics and cardiovascular diseases	49
2.3.4. Lactobacillus plantarum	58
2.3.5. Lactobacillus delbrueckii subsp. Bulgaricus	63
2.4. Bacteriophage and phage therapy	66
2.4.1. Historical Background	68
2.4.2. Types of phages and phage biology	72
2.4.3. Phage therapy	77
2.4.4. Benefits and drawbacks of phage therapy	81

III- MATERIALS AND METHODS	
3.1. Collection of samples	
3.2. Media used for isolation, purification, identification and	
maintenance of the bacterial isolates	
3.3. Isolation of <i>Pseudomonas aeruginosa</i>	
3.3.1 Identification of selected isolates	87
3.3.2 Microscopic examination	88
3.3.3 Biochemical tests	90
3.4. Antimicrobial Susceptibility Testing	100
3.5. Genetic identification of the most resistant bacterial	104
Isolates	104
3.5.1. Extraction of chromosomal DNA	104
3.5.2. Amplification of the 16S rRNA gene	104
3.5.3. Purification and nucleotide sequences of 16S rRNA	105
Gene	103
3.5.4. Bioinformatics analysis and phylogenetic tree	106
Construction	100
3.6. Antibacterial activity of probiotic bacteria	107
3.6.1 Bacterial strains and culture media	107
3.6.2 De Man, Rogosa and Sharpe agar (MRS)	
3.6.3 Antagonistic and antimicrobial assay	
3.7. Effects of probiotics on metabolic disorders in vivo	111
3.7.1. Bacterial strain and doses preparation	112
3.7.2. Animals, experiment design and treatment	
3.7.3. Biochemical parameters analysis	
3.7.4. Statistical analysis	116
3.8. Bacteriophage methods	117
3.8.1. Isolation of <i>P. aeruginosa</i> lytic phages	117
3.8.2. Detection of phages	
A. Spot test	
B. Plaque assay (double agar overlay) method	
<u></u>	

3.8.3. Purification of phages		
3.8.4 Trarnsmission Electron Microscopy		
3.8.5. Host range and cross infectivity of the isolated phages		
3.8.6. Effect of some physical and chemical factors on the	nd chemical factors on the	
infectivity and stability of phages	121	
3.8.6.1. Thermal stability		
3.8.6.2. Effect of pH values		
3.8.6.3. Effect of different organic solvents		
3.8.6.4. Storage of phages at different temperatures	122	
IV- RESULTS	123	
4.1. Distribution of collected isolates	123	
4.2. Biochemical identification of the selected Pseudomonas	130	
Isolates	130	
4.3. Antibiotic susceptibility tests	131	
4.4. Molecular identification of the most resistant isolates		
4.5. Antibacterial activity of probiotic bacteria	146	
4.6. Effects of probiotic on metabolic disorders in <i>vivo</i>		
4.6.1. The effect of <i>L. plantarum</i> probiotic on the body	robiotic on the body	
weight of diabetic and normal rats		
4.6.2. Anti-hyperglycemic activity of <i>L. plantarum</i> probiotic		
4.6.3. Effects of <i>L. plantarum</i> probiotic on biochemical		
Parameters		
4.6.4. Effect of Lactobacillus plantarum probiotic on some		
cardiac markers (CK) and (LDH) levels in normal	157	
and diabetic rat groups		
4.6.5 Effect of Lactobacillus plantarum probiotic on serum	160	
lipid profile in normal and diabetic rat groups	100	
4.7. Isolation of bacteriophages active against <i>P. aeruginosa</i>	162	
isolated from diabetic foot infections	102	
4.8 Morphological characterization and examination under electron		
microscope of the two isolated bacteriophage		

4.9 Host range and cross infectivity of the isolated phages	
4.10. Effect of some physical and chemical factors on the infectivity and stability of phages	173
4.10.1. Thermal stability	173
4.10.2. Effect of pH values	175
4.10.3. Effect of organic solvents on the infectivity of <i>P. aeruginosa</i> phages	177
4.10.4. Storage of phages	178
V- DISCUSSION	181
VI – SUMMARY	225
VII – CONCLUSION	234
REFERENCES	
ARABIC SAMMARY	

List of Abbreviations

Abbreviation	Full term
AK	Amikacin
AMC	Amoxycillin/clavulanic acid
AMP	Ampicillin
ATP	Adenosine triphosphate
ATPase	Adenosine triphosphatase
ATTC	American Type Culture Collection
BMI	body mass index
BP	Blood pressure
BSH	Bile salt hydrolase
CAZ	Ceftazidime
CDC	Centers for Disease Control and Prevention
CEC	Cefaclor
CFSs	Cell-Free Supernatants
CFU	Colony Forming Unit
CI	Confidence interval
CIP	Ciprofloxacin
CL	Cephalothin
CLSI	Clinical and Laboratory Standards Institute
CN	Gentamicin
CRE	Carbapenem-Resistant Enterobacteriaceae
CRO	Ceftriaxone
CT	Colistin
CVD	Cardiovascular Diseases
DA	Clindamycin
DFIs	Diabetic Foot Infections
DFUs	Diabetic Foot Ulcers

DMSO	Dimethylsulphoxide
DNA	Deoxyribonucleic Acid
dsDNA	Double-stranded DNA
EDTA	Ethylene Di-amine Tetra Acetic Acid
EOP	Efficiency Of Plating
EPS	Extracellular Polymeric Substances
ESBLs	Extended-spectrum β-lactamases
FBG	Fasting blood glucose
FDA	Foods and Drugs Administration
FEP	Cefepime
GF	Germ-Free mice
GIT	Gastrointestinal Tract
GLP-1	glucagon-like peptide-1
HbA1c	Glycated hemoglobin A1c
hBD-2	Human Beta Defensin 2
HDL	High-density lipoprotein
HGT	Horizontal gene transfer
HOMA-IR	Homeostasis model assessment of insulin resistance
ICUs	Intensive Care Units
IL	Interleukin
IPM	Imipenem
kDa	Kilodalton
LAB	Lactic Acid Bacteria
LDL	Low Density Lipoprotein
LEV	Levofloxacin
LPL	Lipoprotein Lipase
LPS	Lipopolysaccharides