

بسم الله الرحمن الرحيم

 $\infty \infty \infty$

تم رفع هذه الرسالة بواسطة / هناء محمد علي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

		4534		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(m) (m)		00	ملاحظات:
		حامعتهت		
	since	1992	1.53	

بركات وتكنولوجياراه

Relation between Severity of NAFLD and Insulin Resistance in Obese Children

Thesis

Submitted For Partial Fulfillment of Master Degree in Paediatric

 $\mathfrak{B}_{\mathbf{Y}}$ Safaa Salama Farag $_{M.B.B.Ch}$

Under supervision of

Prof. Hamed Ahmed El khayyat

Professor of Paediatric Faculty of Medicine, Ain Shams University

Dr. Mohamed Tarif Hamza Sallam

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Dr. Heba Essam El kholy

Lecturer of Paediatric Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2022

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Hamed Ahmed El khayyat**, Professor of Paediatric, Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am deeply thankful to **Dr. Mohamed Tarif Hamza Sallam,** Professor of Clinical Pathology, Faculty of
Medicine - Ain Shams University, for his great help, active
participation and guidance.

I am also delighted to express my deepest gratitude and thanks to **Dr. Heba Essam El Kholy**, Lecturer of Paediatric, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I wish to introduce my deep respect and thanks to **Dr. Samer & khayyat,** for his kindness, supervision and cooperation in this work.

Safaa Salama

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	
Aim of the Work	3
Review of Literature	
Obesity	4
Metabolic Syndrome and Non Alcoholic Fatty I (NAFLD)	
Subject and Methods	59
Results	
Discussion	100
Summary	108
Conclusion	110
Recommendations	111
References	112
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Secondary causes of pediatric obesity	
Table (2):	Clues to underlying endogenous obes	sity 24
Table (3):	Laboratory screening in obese childr	en 26
Table (4):	Stages of treatment for childhood ob	esity 29
Table (5):	Indications and contraindications adolescent metabolic bariatric surge	-
Table (6):	Waist-to-hip designation	64
Table (7):	Age and sex distribution among study population (n=20)	
Table (8):	Anthropometric measurer distribution among the study popula	
Table (9):	WHR and WHtR distribution amon study population	
Table (10):	Body composition analysis among study population	
Table (11):	Fasting GLUCOSE, fasting insuling HOMA IR distribution among the population	study
Table (12):	Distribution of NAFLD grades amon study population	_
Table (13):	Association between NAFLD grades age and sex of the study population.	
Table (14):	Association between NAFLD grade the anthropometric measurements of study population	of the
Table (15):	Association between NAFLD grade WHR and WHtR of the study popular	e and

List of Tables Cont...

Table No.	Title	Page No.
Table (16):	Association between NAFLD grathe body composition of the population as regards Fat mass a fat analysis%.	e study and body
Table (17):	Association between NAFLD graftsting Glucose level (mg/dl), insulin level (mIU/ml) and HOM the study population	Fasting MA IR of
Table (18):	Correlation between WHR and and fasting insulin and fasting and HOMA IR of the study popul	glucose,
Table (19):	Correlation between NAFLD Grage and anthropometric measure the study population	ements of
Table (20):	Correlation between NAFLD GrawhR and WHtR of the study pop	
Table (21):	Correlation between NAFLD Grathe body composition of the population as regards fat mass a fat analysis	e study and body
Table (22):	Correlation between NAFLD Grasting Glucose level (mg/dl), Insulin Level (mIU/ml) and HOI the study population	Fasting MA IR of

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Ranking of Middle East and North (MENA) countries by prevalence overweight and obesity	ce of
Fig. (2):	Comorbidities of obesity	17
Fig. (3):	Schematic summary of the complicate childhood obesity	
Fig. (4):	Diagnostic algorithm for approach for childhood obesity	
Fig. (5):	A, Sleeve gastrectomy, B, Roux-en-Y bypass, C, Adjustable gastric band	_
Fig. (6):	Obesity-mediated insulin resistance associated complications	
Fig. (7):	Pathophysiology of non-alcoholic fatt disease (NAFLD), cause and conseque which resemble those of metabolic syn	nces of
Fig. (8):	Algorithm for management of sus	-
Fig. (9):	Mechanical weight scale ZT-160	61
Fig. (10):	Stadiometer seca 217	62
Fig. (11):	Waist measurement in child	63
Fig. (12):	Body composition scale: Tanita So (Japan)	
Fig. (13):	Pie chart of the age distribution amo study population.	_
Fig. (14):	Pie chart of the sex distribution amo study population.	
Fig. (15):	Histogram of WHR and WHtR distri	bution
Fig. (16):	Pie chart of body fat analysis% distriamong the study population	bution

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (17):	Pie chart of HOMA IR distributhe study population	
Fig. (18):	Pie chart of NAFLD grades among the study population	
Fig. (19):	Association between NAFLD WHR of the study population	grades and
Fig. (20):	Association between NAFLD s WHtR of the study population	grades and
Fig. (21):	Association between NAFLD stating Glucose level in the study	•
Fig. (22):	Association between NAFLD stating insulin level in the study	0
Fig. (23):	Association between NAFLD HOMA IR of the study population	0
Fig. (24):	Correlation between WHR a insulin.	•
Fig. (25):	Correlation between WHR and H	OMA IR 91
Fig. (26):	Correlation between WHtR a insulin	_
Fig. (27):	Correlation between WHtR and I	HOMA-IR 93
Fig. (28):	Correlation between NAFLD WHR	
Fig. (29):	Correlation between NAFLD WHtR	
Fig. (30):	Correlation between NAFLD Fasting insulin level.	
Fig. (31):	Correlation between NAFLD HOMA IR	

List of Abbreviations

Abb.	Full term
AAPA	merican Academy of Pediatrics
	djustable gastric band
	lanine aminotransferase
	coustic radiation force impulse
	merican Society for Metabolic and Bariatric
	urgery
AST A	spartate aminotransferase
BFM B	ody Fat Mass
BMI B	ody mass index
CDC C	enters for disease control and prevention
CHD C	oronary heart diseases
cIMT C	arotid intima-media thickness
CK-18 C	ytokeratin 18
DNL D	e novo lipogenesis
FBG F	asting blood glucose
FDA Fo	ood and Drug Administration
FFA F	ree fatty acids
FINS F	asting insulin
GBD G	lobal burden of disease
GDM G	estational diabetes mellitus
	omeostatic model assessment for insulinesistance
Ht H	eight
IR Ir	asulin resistance
Wt W	Veight
IRS Ir	sulin receptor substrate
LFTs Li	
LSGL	aparoscopic sleeve gastrectomy
	letabolic (dysfunction) associated fatty liver
	sease

List of Abbreviations Cont...

Abb.	Full term
MENAMIMS	Metabolic and bariatric surgery Middle East and North Africa region Metabolic syndrome Motivational interviewing Metabolic syndrome Non Alcoholic fatty liver disease
	Non alcoholic steatohapatits
	National Centre for Health Statistics
NEFAs	Non Esterified Fatty Acids
NRC	National Research Centre
HOMA IR	Homeostasis model assessment of insulin resistance
OSA	Obstructive sleep apnea
PNFI	Pediatric NAFLD Fibrosis Index
QOL	Quality of life
QUICKI	Quantitative insulin sensitivity check index
RYGP	Roux-en-Y gastric bypass
SCFE	Slipped capital femoral epiphysis
T2DM	Type 2 Diabetes Mellitus
TG	Triglycerides
TNFa	Tissue necrosis factor
	US Preventive Task Force
WC	Waist circumference
WHO	World Health Organization
WHR	Waist to hip ratio
WHtR	Waist to height ratio

on

Introduction

Childhood obesity become a serious public health problem nowadays as its prevelance rate has doubled the last three decades (GBD 2015) became 5% of children worldwide (*Ng et al.*, 2013), the rate is rising and the onset become at younger age (*WHO*, 2016).

Obesity is the main risk factor of insulin resistance and type 2 diabetes in children (*Ben-Sefer et al.*, 2009), it also increase the risk for developing hypertension, dyslipidemia, heart disease, gall stones, osteoarthritis, respiratory problems and certain types of cancer. Obesity and its related health problems are also preventable (*WHO*, 2016).

Obesity can be defined as excess body fat and diagnosed by BMI from 2 years age and older (*WHO*, 2016), it is calculated by the ratio of weight to height (kg/m²) (*Berger & Kathleen*, 2014), childhood obesity defined as BMI at or above 95th percentile for children of same age and sex (*CDC*, 2009).

Although genetic is the most important cause of obesity (Anderson and Butcher, 2006), it needs environmental and behavioral factors to affect body weight (CDC, 2010). Excessive food energy and sedentary lifestyle is the cause of most obesity cases (Lau et al., 2007).

Childhood obesity leads to many metabolic complications like insulin resistance, glucose intolerance and type 2 diabetes (*Weiss & Kaufman*, 2008).

Insulin resistance (IR) is a pathological condition in which all of the body cells don't respond well to insulin Diabetes Association, (American *2014*). It`s usually undiagnosed until leading to type 2 diabetes (*Chiu et al.*, 2007).

Non alcoholic Fatty liver is a condition in which abnormal fat accumulates in liver and the cause is not alcohol intake (Chalasani et al., 2018). It's usually associated with insulin resistance and obesity (Tilg et al., 2017) and it's the commonest chronic liver disease in pediatrics (Molleston et al., 2014).

Early onset type 2 diabetes usually associated with insulin resistance and obesity. Nonalcoholic fatty liver is considered also a risk factor for type 2 diabetes (Bedogni et al., 2012).

The severity of fatty liver have positive relationship with HOMA index, FBS, fasting insulin and direct relationship with BMI (Saki and Karamizadeh, 2014).

AIM OF THE WORK

Study the relationship between the severity of fatty liver and insulin resistance.

Review of Literature

Chapter 1

OBESITY

Definition of childhood obesity

Obesity is defined as accumulation and storage of excess body fat leading to negative effect on health (*WHO*, 2016).

Obesity is mainly diagnosed by **BMI** (body mass index) which is a replacement marker for body fat measured by dividing the body weight in kilograms to height in meters squared (kg/m²) (*Freedman & Sherry*, 2009). BMI has no constant value it changes with age it decreases between 4and 6 years of age followed by rebound increase during adolescence (*Lo et al.*, 2013), so we use the centers for disease control and prevention (CDC) growth charts for age and sex-specific BMI for children older than 2 years of age (*Styne et al.*, 2017).

Childhood obesity is diagnosed if BMI is greater or at 95th percentile for age and sex (*Styne et al.*, *2017*)

Prevelance:

Childhood obesity became a worldwide epidemic,39 million children under 5 worldwide were overweight or obese in 2020, and over 340 million children and adolescents aged 5-19 were overweight or obese in 2016 (*WHO*, 2021).