

## بسم الله الرحمن الرحيم

 $\infty\infty\infty$ 

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد



# PREVALENCE OF ABNORMAL LIVER FUNCTIONS IN COVID-19 PATIENTS

#### Thesis

## Submitted for Partial Fulfillment of Master Degree In Internal Medicine

## B

#### **Hagar Fawzy Fahmey**

M.B.B.CH
Internal Medicine Department,
Ain Shams University

### Supervised by

#### Prof. Noha Abedelrazek Elnakeeb

Professor of Hepatology and Gastroenterology Faculty of Medicine - Ain Shams University

#### **Prof. Mohamed Magdy Mohamed Ibrahim**

Professor of Hepatology and Gastroenterology Faculty of Medicine - Ain shams University

#### Dr. Hagar Ahmed Ahmed Elissaway

Lecture of Hepatology and Gastroenterology Faculty of Medicine - Ain shams University

Faculty of Medicine Ain Shams University

2022



## مدي انتشار وظائف الكبد الغير طبيعيه لدي مرضي كوفيد-١٩

#### رسالة

توطئة للحصول على درجة الماجستير في الباطنة العامة

مقدمةمن

## الطبيبة / هاجر فوزي فهمي

بكالوريوس الطب والجراحه العامة كلية الطب – جامعة عين شمس

### تحت اشراف

## أد/ نهى عبد الرازق النقيب

أستاذ الكبد والجهاز الهضمي كلية الطب - جامعة عين شمس

## أد/ محمد مجدي محمد ابراهيم

أستاذ الكبد والجهاز الهضمي كلية الطب - جامعة عين شمس

## د/ هاجر احمد احمد العيسوى

مدرس الكبد والجهاز الهضمى كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠٢٢

### **List of Contents**

|   | Title Page                                                         |      |
|---|--------------------------------------------------------------------|------|
| • | List of Abbreviations                                              | I    |
| • | List of Tables                                                     | III  |
| • | List of Figures                                                    | V    |
| • | Introduction                                                       | . 1  |
| • | Aim of the Study                                                   | . 3  |
| • | Review of Literature                                               |      |
|   | - Chapter (1): Liver Injury                                        | 4    |
|   | - Chapter (2): COVID-19 Patients                                   | 31   |
|   | - <b>Chapter (3):</b> Pattern of Liver Injury in COVID-19 Patients | . 54 |
| • | Patients and Methods                                               | 71   |
| • | Results                                                            | 78   |
| • | Discussion                                                         | 106  |
| • | Conclusion                                                         | 117  |
| • | Recommendations                                                    | 118  |
| • | Summary                                                            | 119  |
| • | References                                                         | 124  |
| • | Arabic Summary                                                     |      |

### **List of Abbreviations**

|           | c or ribbroviacions                 |
|-----------|-------------------------------------|
| Abb.      | Full term                           |
|           |                                     |
| 2019-nCoV | 2019 New Corona Virus               |
| AAT       | Alpha-1-Antitrypsin Deficiency      |
| AAT       | a 1 -Antitrypsin                    |
| ACE2      | Angiotensin-Converting Enzyme 2     |
| ACLF      | Acute-on-Chronic Liver Failure      |
| ALP       | Alkaline Phosphatase                |
| ALT       | Alanine Transaminase                |
| ALT       | Alanine Aminotransferase            |
| ARDS      | Acute Respiratory Distress Syndrome |
| AST       | Aspartate Aminotransferase          |
| CMV       | Cytomegalovirus                     |
| CoV       | Corona Virus                        |
| COVID-19  | Corona Virus Disease 2019           |
| CRP       | C-Reactive Protein                  |
| CRS       | Cytokine Release Syndrome           |
| CSF       | Colony-Stimulating Factor           |
| CT        | Computed Tomography                 |
| CYP 3A4   | Cytochrome P450                     |
| DILI      | Drug Induced Liver Injury           |
| DILI      | Drug-Induced Liver Damage           |
| EUA       | Emergency Use Authorization         |
| FNH       | Focal Nodular Hyperplasia           |
| FXR       | Farnesoid X Receptor                |
| GGT       | Gamma Glutamyl Transferase          |
| GM        | Granulocyte-Macrophage              |
|           |                                     |

Highly Significant

HS

## List of Abbreviations (Continued)

| Abb.       | Full term                                               |
|------------|---------------------------------------------------------|
| ICU        | Intensive Care Unit                                     |
| IP-10      | Interferon-γ Inducible Protein 10                       |
| LAMP       | Loop-Mediated Isothermal Amplification                  |
| LDH        | Lactate Dehydrogenase                                   |
| MCP-1      | Monocyte Chemoattractant Protein 1                      |
| MERS       | Middle East Respiratory Syndrome                        |
| MIP-1α     | Macrophage Inflammatory Protein 1-α                     |
| NASH       | Non-Alcoholic Steatohepatitis-Related<br>Liver Fibrosis |
| NS         | Non Significant                                         |
| PBC        | Primary Biliary Cirrhosis                               |
| PCR        | Polymerase Chain Reaction                               |
| P-gp       | P-glycoprotein                                          |
| PSC        | Primary Sclerosing Cholangitis                          |
| RAS        | renin-angiotensin system                                |
| RR         | Respiration Rate                                        |
| rRT        | Real-Time Reverse Transcription                         |
| RT         | Reverse Transcription                                   |
| S          | Significant                                             |
| SARS       | Severe Acute Respiratory Syndrome                       |
| SARS-CoV-2 | Severe Acute Respiratory Syndrome<br>Corona Virus 2     |
| TBIL       | Total Bilirubin                                         |
| TMA        | Transcription-Mediated Amplification                    |
| TNF-a      | Tumour Necrosis Factor-α                                |
| ULN        | Upper Limit Unit of Normal                              |
| WHO        | World Health Organization                               |

#### **List of Tables**

| Table No.   | Title Pa                                                                                                  | age    |
|-------------|-----------------------------------------------------------------------------------------------------------|--------|
|             |                                                                                                           |        |
| Review of L | iterature                                                                                                 |        |
| Table (1):  | Minor nonspecific changes in liver biopsies                                                               |        |
| Results     |                                                                                                           |        |
| Table (1):  | Comparison between moderate and severe group regarding age, sex disease duration and hospital stay        | ,      |
| Table (2):  | Comparison between studied groups regarding comorbidities                                                 |        |
| Table (3):  | Comparison between moderate and severe group regarding COVID-19 symptoms at admission                     | )      |
| Table (4):  | Comparison between studied groups regarding clinical examination (respiratory rate and oxygen saturation) | 1<br>1 |
| Table (5):  | Comparison between studied groups as regard CBC at admission                                              |        |
| Table (6):  | Comparison studied groups regarding CRP, ferritin and D-Dimer.                                            |        |
| Table (7):  | Comparison between studied groups regarding CT chest finding a admission                                  | t      |
| Table (8):  | Incidence of elevated AST, ALT bilirubin at admission                                                     |        |

## List of Tables (Continued)

| Table No.   | Title                                                                                                                                                   | Page                |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Table (9):  | Correlation between dyspnea AST, ALT, bilirubin at time admission                                                                                       | of                  |
| Table (10): | Correlation between AST, A bilirubin and respiratory rate oxygen saturation                                                                             | and                 |
| Table (11): | Correlation between AST, A bilirubin and laboratory find regard TLC, ferritin and D-dimer.                                                              | ding                |
| Table (12): | Comparison between studied groregarding AST, on admission, dur hospital stay and discharge dynamic changes of it along cou of disease                   | ring<br>and<br>arse |
| Table (13): | Comparison between studied gro<br>regarding ALT, on admission, dur<br>hospital stay and discharge<br>dynamic changes of it along cou<br>of disease      | ring<br>and<br>arse |
| Table (14): | Comparison between studied gr<br>regarding bilirubin, on admiss<br>during hospital stay and discha<br>and dynamic changes of it al<br>course of disease | ion,<br>arge<br>ong |

## **List of Figures**

| Figure No.   | Title 1                                                                                                                                        | Page |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Review of Li | terature                                                                                                                                       |      |
| Fig. (1):    | Acute hepatocyte injury                                                                                                                        | 11   |
| Fig. (2):    | Evaluation of hepatic inflammation                                                                                                             | 12   |
| Fig. (3):    | Three forms of necrosis. (a)<br>Centrilobular, (b) Midzonal and (c)<br>Periportal                                                              |      |
| Fig. (4):    | Multiple organ injuries in SARS-CoV-2 infection                                                                                                |      |
| Fig. (5):    | COVID-19 can cause direct liver damage, either through ACE-2 entry or indirect through generalized inflammation caused by the cytokine cascade |      |
| Results      |                                                                                                                                                |      |
| Fig. (1):    | Comparison between the studied groups as regard age (P > 0.189)                                                                                |      |
| Fig. (2):    | Comparison between the studied groups as regard sex (P = 0.001)                                                                                |      |
| Fig. (3):    | Comparison between studied groups as regard disease duration (P < 0.001)                                                                       |      |
| Fig. (4):    | Comparison between studied group as regard hospital stay (P < 0.001)                                                                           |      |
| Fig. (5):    | Comparison between studied groups as regard co-morbidities                                                                                     |      |
| Fig. (6):    | Comparison between studied groups regarding COVID symptoms at admission                                                                        |      |

## List of Figures (Continued)

| Figure No. | Title Pag                                                                    | ge |
|------------|------------------------------------------------------------------------------|----|
| Fig. (7):  | Comparison between studied groups regard RR at admission                     | 7  |
| Fig. (8):  | Comparison between studied groups oxygen saturation at admission 8           | 7  |
| Fig. (9):  | Comparison between studied groups regard TLC at admission 89                 | 9  |
| Fig. (10): | Comparison between studied groups as regard ferritin at admission9           | 1  |
| Fig. (11): | Comparison between studied groups as regard D-dimer at admission9            | 1  |
| Fig. (12): | Comparison between studied groups regarding CT finding at admission 93       | 3  |
| Fig. (13): | Incidence of elevated AST, ALT, Bilirubin in total patient through admission | 4  |
| Fig. (14): | Correlation between AST and respiratory rate at admission9                   | 6  |
| Fig. (15): | Correlation between ALT and respiratory rate at admission9                   | 6  |
| Fig. (16): | Correlation between bilirubin and respiratory rate at admission9             | 7  |
| Fig. (17): | Correlation between ALT and ferritin level at admission                      | 8  |
| Fig. (18): | Correlation between AST and ferritin level at admission99                    | 9  |

## List of Figures (Continued)

| Figure No. | Title Page                                                                              |
|------------|-----------------------------------------------------------------------------------------|
| Fig. (19): | Comparison between studied groups regard AST along course of the disease                |
| Fig. (20): | Comparison between studied group regard median of AST along course of disease           |
| Fig. (21): | Comparison between studied groups regarding ALT along course of disease                 |
| Fig. (22): | Comparison of studied groups regarding median of ALT along course of disease            |
| Fig. (23): | Comparison between studied groups regarding bilirubin along course of disease           |
| Fig. (24): | Comparison between studied groups regarding median of BILIRUBIN along course of disease |

#### INTRODUCTION

Corona viruses are a family of viruses that are known to cause both respiratory and intestinal diseases in Various animal species and humans (*Dong et al., 2019*). These viruses tend to target the upper respiratory tract, causing Anywhere from moderate to severe illnesses, such as the cold or in more extreme cases, pneumonia. To date, 7 human corona viruses have been identified, including the 3 epidemic viruses of severe acute respiratory syndrome (SARS)-CoV, middle east respiratory syndrome (MERS)-CoV and the newest, severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) (*Niu et al., 2016*).

In December of 2019, a series of pneumonia cases of unknown origin began to spread in the central city of Wuhan, China. Now identified as SARS-CoV-2, the virus had gone on to infect more than 300,000 people Worldwide by March 2020 (*Jia et al.*, 2019).

The corona virus disease (COVID-19) has been labelled a pandemic by the World Health Organization (WHO) having led to thousands of deaths and hospitalizations worldwide.

While most COVID-19 cases have been identified as mild, more extreme diagnoses have led to respiratory failure, septic shock, and/or multiple organ dysfunction (*Wu and McGoogan*, 2020).

In symptomatic patients, the clinical manifestations of the disease usually present as fever, cough, fatigue and other signs of respiratory tract infections (*Chen et al.*, 2020; *Wang et al.*, 2020). In severe cases, individuals elicit symptoms of pneumonia with abnormal chest CT, associated with complications of severe acute respiratory distress. Syndrome, acute cardiac injury, kidney failure, and eventually death.

Liver impairment has been reported as a common clinical manifestation in patients with SARS-COV infection, even if not a prominent feature of the illness (*Humar et al., 2004; Chan et al., 2004*). In the novel epidemic SARS-CoV-2, it is still unclear how significant liver impairment is. In the present study, we sought to analyse liver function changes (AST, ALT, Bilirubin, ALBUMIN) and evaluate its relationship with the disease progression in COVID-19 patients.

#### **AIM OF THE STUDY**

To evaluate the incidence of concurrent elevation of liver function tests (AST, ALT, Bilirubin), decrease albumin, examine dynamic changes of it and its relationship with disease throughout the course of COVID-19 patients.

# CHAPTER (1): COVID-19 THE NOVEL VIRUS

Corona virus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). The first case was identified in Wuhan, China, in December 2019. The disease has since spread worldwide, leading to an ongoing pandemic (*Vaira et al., 2020*).

Symptoms of COVID-19 are variable, but often include fever, cough, fatigue, breathing difficulties, and loss of smell and taste. Symptoms begin one to fourteen days after exposure to the virus. Of those people who develop noticeable symptoms, most (81%) develop mild to moderate symptoms (up to mild pneumonia), while 14% develop severe symptoms (dyspnea, hypoxia, or more than 50% lung involvement on imaging), and 5% suffer critical symptoms (respiratory failure, shock, or multiorgan dysfunction). Older people are more likely to have severe symptoms. At least a third of the people who are infected with the virus remain asymptomatic and do not develop noticeable symptoms at any point in time, but they still can spread the disease. Around 20% of those people will remain asymptomatic throughout infection, and the rest will develop symptoms later on, becoming pre symptomatic rather than asymptomatic and therefore having a higher risk of transmitting the virus to others. Some people continue to