

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / هناء محمد علي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

		4534		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(m) (m)		\$	ملاحظات:
		حامعتب		
	since	1992	1.53	

بركات وتكنولوجياراه

Relationship between Frailty and Geriatric syndromes among elderly attending two Primary health care centers in Cairo

Thesis

Submitted for Partial Fulfillment of Master degree In Public health

By:

Ghada Saad Mohamed

(M.B.B., CH.)

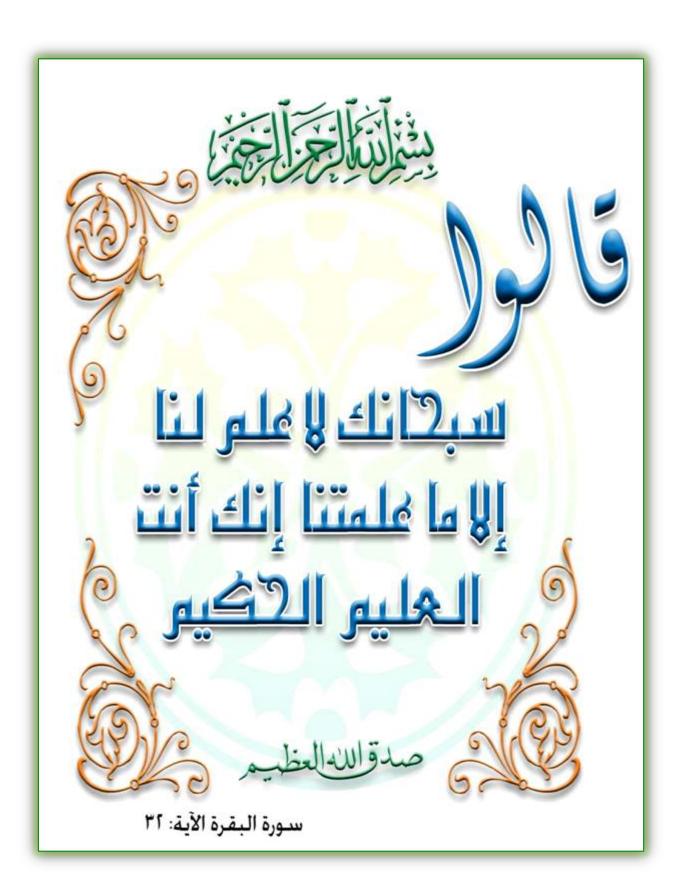
Under Supervision of:

Prof. Dr. / Iman Mohammed Ahmed Bakr

Professor of public health
At Department of Community, Environmental and Occupational medicine
Ain Shams University

Prof. Dr. / Sarah Ahmed Hamza

Professor of Geriatrics and Gerontology
At Department of Geriatrics and Gerontology- Ain Shams University


Dr. / Mohamed Abdel Maguid Tolba Momen

Assistant professor
At Department of Community, Environmental and Occupational medicine
Ain Shams University

Dr. / Ayat Farouk Manzour

Assistant professor
At Department of Community, Environmental and Occupational medicine
Ain Shams University

Faculty of medicine Ain Shams University 2022

Acknowledgments

First and forever, thanks to **Allah**, Almighty for giving me the strength and faith to complete my thesis and for everything else.

Then I would like to express my sincere appreciation and gratitude to Prof. Dr. / Iman Mohammed Ahmed Bakr, Professor of public health, At Department of Community, Environmental and Occupational medicine - Ain Shams University, for her great support all through the whole work, for her valuable guidance, and follow up of the progress of this work. I have been greatly honored by her supervision.

Profound and ultimate gratitude are expressed to Prof. Dr / Sarah Ahmed Hamza, Professor of Geriatrics and Gerontology, At Department of Geriatrics and Gerontology- Ain Shams University, for her great support all through the whole work, for her valuable guidance, and follow up of the progress of this work. I have been greatly honored by her supervision.

I would lile also to thank with all appreciation Dr. / Mohamed Abdel Maguid Tolba Momen, Assistant professor, At Department of Community, Environmental and Occupational medicine - Ain Shams University, for his great support all through the whole work, for his valuable guidance, and follow up of the progress of this work. I have been greatly honored by his supervision.

I would lile also to thank with all appreciation Dr. Ayat Farouk Manzour, Assistant professor At Department of Community, Environmental and Occupational medicine - Ain Shams University for her great support all through the whole work, for her valuable guidance, and follow up of the progress of this work. I have been greatly honored by her supervision.

I would like to thank my **Parents** and my **Husband**, who sacrificed a lot for me for their continuous support, endless help and encouragement.

A Ghada Saad Mohamed

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vii
Introduction	1
Goal and Objectives	5
Review of Literature	
Frailty: Definition and Pathophysiology	6
Management of Frailty	22
Geriatric Syndromes	34
Polypharmacy	36
Urinary Incontinence	43
Postural Instability	52
Cognitive Impairment	58
Immobility	63
Participants and Methods	69
Results	79
Discussion	104
Summary and Conclusion	114
References	119
Appendix	······
Arabic Summary	······

List of Abbreviations

Abbr. Full term

AD : Alzheimer's Disease

ADL : Activities of Daily Living

ADRs : Adverse Drug Reactions

ARMOR: Assess Review Minimize Optimize Reassess

BMD : Bone Mineral Density

BMI : Body Mass Index

CAPMAS: Central Agency for Public Mobilization and Statistics

CDP : Computerized Dynamic Posturography

CGA : Comprehensive Geriatric Assessment

CHESS: Changes in Health, End-stage disease and Symptoms

and Signs

CHS : Cardiovascular Health Study

CLA : Cognitive leisure Activities

CMV : Cytomegalovirus

COPD : Chronic Obstructive Pulmonary Disease

CRP : C - reactive protein

CSHA : Canadian Study of Health and Ageing

CVD : Chronic Kidney Disease

DHEAS: DeHydro Epi Androsterone Sulfate

DVT: Deep Venous Thrombosis

EH : Estimated Height

FGA : Functional Gait Assessment

GDS : Geriatric Depression Scale

GFI : Groningen Frailty Indicator

GS : Geriatric Syndromes

GWAS : Genome Wide Association Studies

HF : Heart Failure

HIV : Human immunodeficiency virus

MCI : Mild Cognitive Impaired

MCPS : Marigliano-Cacciafesta Polypathological Scale

MEP : Multicomponent Exercise Program

MI : Myocardial Infarction

MMSE : Mini Mental State Examination Test

MNA : Mini Nutritional Assessment

MUFAs : Mono Unsaturated Fatty Acids

MUI : Mixed Urinary Incontinence

OAB : Overactive Bladder

OT : Occupational Therapy

PHCs: Primary Health Care Centers

PP : Polypharmacy

PSI : Pounds per square inch

QOL : Quality Of Life

SD : Standard Deviation

SHARE : Survey of Health, Ageing and Retirement in Europe

SOF : Study of Osteoporotic Fractures

SPSS : Statistical Package for Social Sciences

START : Screening Tool used to Alert doctors to the Right

Treatment

STOPP: Screening Tool to Older Person's potentially

inappropriate Prescriptions

SUI : Stress Urinary Incontinence

TAC: Total Antioxidant Capacity

TFI: Tilburg Frailty Indicator

UI : Urinary Incontinence

UUI : Urgency Urinary Incontinence

VR : Vestibular Rehabilitation

Vo2 : Maximal Aerobic Power

VTE : Venous Thromboembolism

WBC: White blood Cell

List of Tables

Table No.	Title		Page No.
Table (1): Comparison			
Table (2): Personal, S	• •	~ -	
Table (3): Marital and			
Table (4): Smoking st	atus among partici	pants	81
Table (5): Anthropom	etry of the study pa	articipants	81
Table (6): Medical his	story of the particip	oants	82
Table (7): Risk of participants	-	• •	_
Table (8): Geriatric sy	ndromes among pa	articipants	84
Table (9): Nutritional	assessment of the J	participants	85
Table (10): Relations criteria (part I)	-	•	
Table (11): Relations criteria (part II)	-	•	• 1
Table (12): Relationsh	nip between occupa	ation and frailty sta	atus 87
Table (13): Relationsh	nip between chronic	c diseases and frai	lty status. 88
Table (14): Relationsh	nip between medica	al history and frailt	ty status 88
Table (15): Relation status	-	<u> </u>	
Table (16): Relations status	_		-
Table (17): Relationsh	nip between Nutriti	onal status and fra	ilty status91

Table (18): Logistic regression model for risk factors of frailty92
Table (19): Relationship between polypharmacy and socio-demographic criteria
Table (20): Relationship between polypharmacy and age of participants 94
Table (21): Relationship between cognitive impairment and socio-demographic criteria. 95
Table (22): Relationship between cognitive impairment and age of participants. 96
Table (23): Relationship between cognitive impairment and chronic diseases. 96
Table (24): Relationship between urinary incontinence and socio-demographic criteria 97
Table (25): Relationship between urinary incontinence and age of participants. 98
Table (26): Relationship between urinary incontinence and chronic diseases 98
Table (27): Relationship between postural instability and socio-demographic criteria. 99
Table (28): Relationship between postural instability and age of participants
Table (29): Relationship between postural instability and cognitive impairment and risk of depression. 100
Table (30): Relationship between postural instability and chronic diseases. 100
Table (31): Relationship between immobility and socio-demographic criteria
Table (32): Relationship between immobility and age of participants. 102
Table (33): Relationship between immobility and chronic diseases 102

` ′	Relationship				
` /	Relationship of participants	L			

List of Figures

Figure No	. Title P	age No.
Figure (1):	The frailty cycle. (Reproduced with permission The McGraw-Hill Companies)	
Figure (2):	Chronic inflammation and frailty syndrome	10
Figure (3):	The common inflammatory origin of heart failure frailty	
Figure (4):	The prescribing cascade	40
Figure (5):	Hand grip strength measurement by standard hand strength dynamometer in a study participant	
Figure (6):	Knee height measurement	75
Figure (7):	Frailty status among participants	83
Figure (8):	Frequency of each frailty phenotype among participation	pants83
Figure (9):	Frequency of geriatric syndromes among participan	nts84
Figure (10):	Nutritional status among the participants	85
Figure (11):	Frailty status among those suffering from ger syndromes	
Figure (12):	Frailty status among the different geriatric syndron	nes90
Figure (13):	Frequency of frailty among different nutritional sta	tus91

Introduction

People is in continues aging worldwide. In 2012, 8% (or 562 million) of people were aged 65 and over. In 2015, 3 years later, the proportion of the older population reached 8.5 % of the total population. The next 10 years will witness an increase of about 236 million people aged 65 years and older all over the world (**He et al., 2015**).

United Nations reported that by 2050, one-fifth of the world's population will be over 60 years of age (**Safarpour et al., 2018**).

In Egypt, the percent of population above the age of 60 years was 6.7 percent of Egypt population in 2017. This percent represents around six million citizens, according to Central Agency for Public Mobilization and Statistics (CAPMAS) (CAPMAS, 2017).

This aging of the population will increase the prevalence of chronic diseases and functional impairment. This expected increase will also lead to increase utilization of the health care system (**Senn et al., 2015**).

Frailty is a common ageing problem that increases the risk of getting adverse health outcomes in elderly (Setiati et al., 2017). It is a condition of vulnerability to poor resolution of homoeostasis after a stressor event. It is an outcome of cumulative decrease in many physiological systems during a lifetime. This cumulative decline depletes homoeostatic reserves until minor stressor causes disproportionate changes in health status (Clegg et al., 2013). It can be considered as state of diminished physiological reserve over multiple organ systems (Partridge et al., 2012).

Physical frailty can be defined as a medical syndrome with many causes and contributors and it is characterized by diminished strength, endurance, and reduced physiologic function which increases an individual's vulnerability to develop increased dependency and/or death" (Morley et al., 2013).

Pre-frailty defined as a multi-factorial and multi-dimensional syndrome which is associated with social isolation, functional, sensory and physiological impairment. Pre-frailty was also characterized by weakness, fatigue, tiredness, being slowed up or tired all the time. It could be considered as the first stage towards developing frailty or as a reversible stage before frailty (Sezgin et al., 2020).

The term geriatric syndromes (GS) has been used to describe common conditions in the elderly, although not characterized as diseases, but they can lead to disability and death. GS were announced by Bernard Isaacs (1969), who called them 'Giants of Geriatric Medicine' and included cognitive incapacity, postural instability, immobility, urinary incontinence and iatrogenesis (poly-pharmacy) (Closs et al., 2016).

These "chronic" geriatric syndromes differ from "chronic disease" in the sense that they have multiple underlying factors and involve multiple organ systems and their impact on quality of life and disability is considerable. However, if recognized early, preventative measures can be initiated to reduce part of the burden notably by decreasing the risk of hospitalization and institutionalization and improving the quality of life (QOL) of elderly patients (Senn et al., 2015).

Geriatric syndromes can't be treated by medication, but well-planned care can prevent their progression (**Kozaki et al., 2013**).

There is a greater chance of the elderly becoming frail as the number of geriatric syndromes accumulates. Frail elders also have an increased risk of developing other geriatric syndromes. Knowing this dynamic can assist in interventions to prevent the development of geriatric syndromes that may lead elderly persons to an increased risk of frailty (**Closs et al., 2016**).

Mild Cognitive Impaired (MCI) is defined as a transitional stage from normal to dementia. Patients affected with this condition have a higher possibility to develop Alzheimer's disease (AD) with the average rate of 10–15% annually over 5 year (**Da Silva. 2015**). A number of studies have reported that frailty increases the risk of future cognitive decline and this cognitive impairment increases the risk of frailty which suggests that cognition and frailty interact within a cycle of decline associated with ageing (**Robertson et al., 2013**).

Polypharmacy was defined as the use of multiple drugs more than are medically necessary (Maher et al., 2014), or the administration of more medications than are clinically indicated, representing unnecessary/unwanted drug use (Dagli et al., 2014). Other studies used Numerical definitions. The most used numerical definition is ≥ 5 drugs (Masnoon et al., 2017). It was reported that older frail people are significantly more likely to be exposed to high-risk prescribing than robust older people, and that exposure to high-risk medications was significantly associated with the development of frailty (Gnjidic, et al., 2012).

Postural instability (falls) was considered the third frequent syndrome among the elderly and alterations in balance were more frequent among the frail elderly (Closs et al., 2016). It can lead to changes in gait (which is a frailty criteria) and increases the risk of falls (Coimbra et al., 2010). Falls