Salwa Akl

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

-Call +600-2

Salwa Akl

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Salwa Akl

بعض الوثائق الأصلية تالفة وبالرسالة صفحات لم ترد بالأصل

Zagazig University Faculty of Science B18 501

Synthesis of some modified nucleosides

A Thesis
In partial fulfillment of requirement
Of
Master of Science degree

By Wail Mohamed Farouk

Advisors

Dr. Ahmed Fathi SaidAssist Professor
Of organic chemistry

Dr. Atef Mohamed AmerAssist Professor
of organic chemistry

Dr. Mohamed Salem Amer Lecture of organic chemistry

(1999)

The Index Content

	Page
1- Summary	1
2- Introduction	3
2.1-Literature visser	3
2.2-The role of nucleosides in biosynthesis the	
nucleic acids	25
2.3-The genetic code and relation to nucleosides	28
2.4-Modified components of tRNA	31
2.5-Structure of purine nucleosides	. 35
2.5.1-Nomenclature of purines	35
2.5.2-Bonding between carbohydrate moiety and	
heterocyclic base	39
2.5.3-Nomenclature and a bridged formulas of nucleosides	43
2.5.4-Nucleoside antibiotics	47
3- Discussion	53
3.1-Evaluation of some synthesized guanosine derivatives	
against hacteria	83
4-Experimental part	85
4.1-General remarkes	85
4.2- Synthesis of 8-diphenylaminoguanosine	87
4.3- Synthesis of 8-ethylcarboxyhydrazinoguanosine	87
4.4- Synthesis of 8-(1-carboxy-2-hdyroxyethyl)aminoguanosine	.88
4.5- Synthesis of 8-(2-carboxycyclobutyl)aminoguanosine	88
4.6- Synthesis of 8- carboxymethyl aminoguanosine	89
4.7- Synthesis of 8- (methylphenyl)aminoguanosine	89
4.8- Condensation of 8-Bromoguanosine with alanine	90
4.9- Synthesis of 8-thioguanosine	90
4.10-Synthesis of 8-(1-carboxyisobutyl)aminoguanosine	91
4.11-Synyhesis of 8-(2-hydroxyethyl)aminoguanosine	91
4.12-Synthesis of 8-methoxyguanosine	91
4.13-Synyhesis of 8-hydrazinoguanosine	92
4.14-Synthesis of 8-azidoguanosine	92
4.15-Synthesis of 8-thiosemicarbamidoguanosine	93
4.16-Synthesis of Diguanisylamine	93
4.17-Synthesis of 8-(adenino)guanosine	93
4.18-Synthesis of 8-(1-carboxyisopentyl)aminoguanosine	94
4.19-Synthesis of 8-aminoguanosine	94
4.20-Synthesis of 8-bromoguanosine and 2',3'-O-isopropylidene	
-8- bromoguanosine	95
4.21-Synthesis of 2',3'-O-isopropylidene-8-(N,N- dimethylamind)	
guanosine	95

4.22-Synthesis of 2',3'-O-isopropylidene-2,5'-anhydro-8-(N,N-di	
methylamino)guanosine	. 96
4.23- Synthesis of 2',3'-O-Isopropylidene uridine	96
4.24-Reaction of 2',3'-O-isopropylidene uridine with	
maleic anhydride	97
4.25- Synthesis of 6-thioneguanosine derivative	97
4.26- Deprotection of the isopropylidene group	98
4.27- Synthesis of 5'-guanosinethiol derivative	98
4.28- Synthesis of 5'-chloroguanosine derivative	98
4.29- Synthesis of 5-cyanoguanosine derivative	99
4.30- Synthesis of 2',3'-O-isopropylideneguanosine	99
4.31- catalytic reduction for 5'-cyanoguanosine derivative	100
5 - References	101
6 - Arabic Summary	111

Li

.

Acknowledgement

The author is very obliged to Ass. Prof. Dr. A.Fathi Said, Ass. Prof. Dr. A.Mohamed Amer and Dr.M.Salem Amer chemistry department, faculty of science, zagazig university for their encouragement, kind assumption, advice, guidance and valuable criticism.

The author is very grateful to them for scientific programme planning and care both at the experimental work and at the elaboration of the manuscript. And special thanks to Dr. Emman El- Azony for her helping care at the biological experiment.

10

NOTE

Beside the work carried out in this thesis the candidate has attended post graduate courses in organic chemistry, covering the following topics:

- · Mechanism of organic chemistry reactions.
- · Heterocyclic compounds .
- Microanalysis of organic compounds .
- Spectroscopy (U.V., I.R., N.M.R., M.S.).
- Synthesis reactions .
- Free radical reactions .
- Carbohydrates .
- Deutsch language .

Summary

In this thesis some of the guanosine derivatives which are belong to the nucleosides and its structure consists of purine ring connected with sugar residue at position 9.

The synthesized compounds include amino and amino acids residues also some of the synthesized derivatives had a biological activity since it had the ability to interfere into the DNA of the cell. Such that modified nucleosides are derivatives from the normal nucleosides which had an important role in biological activity especially the binding between tRNA and mRNA. They had an important role in protein biosynthesis. Some of these nucleosides used as antibiotics and can be prepared in laboratory which are resemble in the structure of the nucleosides which are present in DNA. Also it can be used as antitumor, antifungs, inhibitor for virus and used as therapy for both of rheumatic arthritis and increasing uric acid in blood.

8-Bromoguanosine was used as a suitable substrate and it was easily prepared by reacting guanosine with bromine in presence of water. Then it was used as a substrate to prepare many derivatives by nucleophillic substitution

of bromine at position 8 of the purine ring with some aromatic and aliphatic amine and amino acids, such as diphenyl amine, ethylhydrazinoformate, serine, proline, glycine and others. It was prepared 4-thionederivative <u>96</u> by replacement of oxygen atom with sulfur at C-4. Also some other products such as dinucleoside derivative were prepared, and the reaction of uridine with the maleic anhydride was also described. Beside to that the cyclonuleoside derivative <u>93</u> was prepared. This compound has an important role in preparation of some other derivatives especially by functionalizing the reaction at position 5th of the ribose residue after protection the positions 2th and 3th.

Finally, the structure of these derivatives was proved and elucidated by the physical and spectral analysis such as IR., NMR., UV., and MS., and the micro analysis was also performed. Furthermore the biological evaluation of some of the synthesized derivatives was achieved by detection their effect on both of some of the gram positive and the gram negative bacteria.

introduction

Visser et at⁽¹⁾ reported a synthesis of 3'- amino - 3'- deoxy guanosine 5'- triphosphate. Trimethylsilylation of N²- palmitoylguanine followed by glycosylation with 1,2 - di-O-acetyl -O- benzoyl-3- trifluoroacetamido -3'deoxy-D-ribofuranosc gave nucleoside 1. The DNA binding of 2benzidine azo dyes, congored and direct blue 6 was compared in rat liver by Kennely and co-workers⁽²⁾, both dyes showed binding consequent upon metabolism to benzidine and in each case hydrolysis of the liver DNA vielded N- (Deoxy guanosine - 8- yl) -N'- acetylbenzidine. Hering⁽³⁾ described a new preparation and properties of chloro - N, Ndialkylamino - 2,2,2- tirchloro ethoxy - and chloro-N,N-dialkylamino 2,2,2-trichloroethoxy and ehloro-N,N,-dialkylamino2,2,2-trichloro -1,1dimethylethoxyphosphines and thier deoxy nucleoside phosphitamidates. Deoxy nucleoside phosphitetamidates were building blocks for DNA synthesis. Yankanagouda and co-workers(4), showed that annelation of guanosine by reaction with methyl -N-cyanomethanimidate and sodium methoxide to give a tricyclic flourescent analog of adenosine. The tricyclic N- ribonucleoside 2 thus formed ressemble adenosine in its periphery and is an inhibitor of adenosine deaminase. 1-Ethyl-3-methyl isoguanosine 3 was prepared by Hae Y, et al⁽⁵⁾, on reacting of ribofuranosylimidazole with EtNCO in DMF and treating the product with NH₄ OH. Gordeeva et al⁽⁶⁾, reported a nucleotides labeled with tritium in the 5- position of the pyrimidine ring or the 8 position of the purine rings which prepared by direct bromination followed by catalytic dehalogenation with tritium gas.A series of 8substituted guanosine and 2'-deoxyguanosine derivatives were tested as inducers for the differentiation of friend murine erythroleukemia cells in culture.(7)

Vasu et al⁽⁸⁾ reported a reproducible and highly efficient synthesis of isoguanosine starting from guanosine and is described in which lithe key step is the photo induced hydration of 2 - iodoadenosine . P.C chaeles et al⁽⁹⁾ reported a high temperature glycosylation of 3,6dibromoallopurinol with 1-O-acetly-2,3,5,tri-O-benzoyl - D ribofuranose in the presence of BF₃OEt₂ followed by ammonolysis to provide nucleoside 4. Similar glycosylation of either3-bromo-4(5H)- oxopyrazolo (3,4-d) pyrimidine-6-ylmethylsulphoxide and subsequent ammonolysis also gave nucleoside 4. Application of this glycosylation procedure to 6-(methylthio)-4(5H)-oxopyrazolo[3,4-d] pyrimidine -3- carboxamide gave the corresponding N-1 glycosyl derivative 5. Consequently Wang (10) prepared isoguanosine by a one - potreaction involving a condensation of 5-amino-1- (β - D - ribofuranosyl) imidazole - 4 - carboxamide with benzoylisothiocyanate. Treatment of the resulting thiourea derivation with N, N- dicyclohexyl carbdiimide Furnished imidazole carbonitrile which was then annulated with ethanolic ammonia to afford isoguanaosine. The reaction of deoxy guanosine derivative 6 with Cl (CH₂)₂OH in MeCN in the presence of DBU gave 70 % tricyclic nucleoside 7, this reaction was prepared by Maggio A. E et al(11) It is noteworthy that a method for the synthesis of O⁶-alkylated guanosine and deoxygunosine phosphoramidates. described by Schulz B.S⁽¹²⁾, Furthermore John M.et at (13) investigated the reactions of the genotoxin 2 - bromoacroline with DNA, the aldehyde was treated with 2- deoxyguanosine to give isomeric adducts. Chung and co- workers (14) reported the reactions under mild conditions of deoxy gunaosine with the mutagenic, α, β- unsaturated carbonyl compounds. The structures of the adducts were characterized by U.V. proton NMR, and Mass spectra and compared to those formed from