

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / هناء محمد علي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

		4534		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(m) (m)		00	ملاحظات:
		حامعتهت		
	since	1992	1.53	

بركات وتكنولوجياراه

PRODUCTION OF SOME NUTRACEUTICAL FOODS FROM FOOD PROCESSING WASTES FOR PRESCHOOL CHILDREN

Submitted By

Wael Mohamed Mansour Sayed Mansour B.Sc., Agric. Sc., Fac. Agric., Cairo Univ., 1996

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Master Degree
In
Environmental Science

Department of Environmental Agricultural Sciences
Faculty of Environmental Studies and Research
Ain Shams University

APPROVAL SHEET PRODUCTION OF SOME NUTRACEUTICAL FOODS FROM FOOD PROCESSING WASTES FOR PRESCHOOL CHILDREN

Submitted By Wael Mohamed Mansour Sayed Mansour B.Sc., Agric. Sc., Fac. Agric., Cairo Univ., 1996

A Thesis Submitted in Partial Fulfillment

Of

The Requirements for the Master Degree

In

Environmental Science Department of Environmental Agricultural

Sciences

This thesis was discussed and approved by:

The Committee	Signature
Dr. Shahinaz Ahmed Helr	ny
Prof. of Food Science and	Technology, Faculty of Agriculture
Cairo University	
Dr. Youssef Morse Yousse	ef Elkenany
Prof. of Food Science and	Technology, Faculty of Agriculture
Ain Shams University	
Dr. Ihab Salah Abd El-Ha	mid Ashoush
Prof. of Food Science and	Technology, Faculty of Agriculture
Ain Shams University	
Dr. Mohamed Abd Elrazel	k Elnawawy
Prof. of Food microbiology	y, Department of Food Science,
Faculty of Agriculture, Ain	Shams University

PRODUCTION OF SOME NUTRACEUTICAL FOODS FROM FOOD PROCESSING WASTES FOR PRESCHOOL CHILDREN

Submitted By

Wael Mohamed Mansour Sayed Mansour

B.Sc., Agric. Sc., Fac. Agric., Cairo Univ., 1996

Under the supervision of:

Dr. Mohamed Abd Elrazek Elnawawy

Prof. of Food Microbiology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Dr. Ihab Salah Abd El-Hamid Ashoush

Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University

Dr. Wageeh Ahmed Elmalky

Prof. of Biochemistry, National organization for Drug Control and Research

ABSTRACT

Wael Mohamed Mansour Sayed Mansour: "Production of some nutraceutical foods from food processing wastes for preschool children". Unpublished M.Sc. Thesis in Environmental Agricultural Sciences, Faculty of Environmental Studies and Research, Ain Shams University, 2022.

Until recently, the aim of foods was to provide nutrients to humans and satisfy hunger, but nowadays the aim is to satisfy consumers' needs (appearance and health benefit), besides trying to avoid diseases related to nutrition. In this respect, functional foods play distinguished role. Hence, the concept of functional foods. Therefore, the present study aimed to produce low-calorie biscuits and crackers and to evaluate their effectiveness on the body weight gain using oat whole grain powder and sweet cheese whey by using different formulations. In addition to evaluate the effect of these products on lipid profiles, glucose level as well as kidney and liver functions in high fat diet fed rats.

The results of the arbitration of biscuits and crackers formulas ascertained high sensory acceptance of the following B3, B4 for biscuits formulas and C3, C4 for crackers formulas as they recorded high sensory acceptance compared to control and others formulas.

The proximate analysis of the biscuits and crackers formulas found biscuits (B4) had the highest in moisture (5.13%), ash (1.76%) and carbohydrates (33%) and the lowest in fat (16.71%) content as well as the lowest calories value (314.43 cal.). Also, the crackers formulae (C3 and C4) had the highest in moisture (11.52; 10.96 %) and ash (2.4; 2.58 %),

respectively. While, they recorded the lowest in fat (13.89; 13.89 %) contents and the lowest calories value (266.99; 273.69 cal.). Also, there were increase in both of antioxidants activity and phenols content for the biscuits and crackers formulas.

Feeding rats on different biscuits and crackers formulae decreased body weight gain and showed adipocyte histological alterations. Besides feeding rats recorded significantly decreased levels of both total cholesterol and LDL. Meanwhile, data revealed elevated HDL levels. In addition, noticeable improvement in the liver function enzymes (AST) and (ALT) and the kidney function parameters (Urea and Creatinine) at the end of experimental period (60 day). In conclusion, consumption of sweet cheese whey and oat whole-grain in form of low calorie biscuits and crackers formula reduced the adipocytes histological changes, resulting in reduction of the body weight of the rats.

Keywords: Whey Cheese, Oat whole-grain, Biscuits, Crackers, Proximate analysis, Antioxidant activity, Sensory evaluation, Weight Gain, Lipid Profile, Liver function, Kidney function, Histopathological alteration, Rats.

ACKNOWLEDGMENT

First and before all, full praise and gratitude is to ALLAH, who granted me the ability to perform this thesis and helped me to pass safely through all the difficulties.

My sincere appreciation and deepest gratitude to **Prof. Dr. MohamedAbd Elrazek Elnawawy**, Prof. of Food Microbiology, Dept. of Food Sci., Faculty of Agriculture, Ain Shams University, for his supervision, with him I learned a lot, at both professional and personal levels. His wide knowledge and his logical way of thinking have been of great value for me. His understanding and encouraging have provided a good basis for the present work. I have no great words to express how much I am grateful to him, Thank you so much.

My sincere appreciation and deepest gratitude to **Prof. Dr. Ihab** Salah Abd El-Hamid Ashoush, Prof. of Food Science, Dept. of Food Sci., Faculty of Agriculture, Ain Shams University, for his supervision, and his wide knowledge and his logical way of thinking have been of great value for me. His understanding and encouraging have provided a good basis for the present work. I have no great words to express how much I am grateful to him. Thank you so much.

Deepest thanks and sincere appreciation to **Prof. Dr. Wageeh Ahmed Elmalky**, Prof. of biochemistry, National organization for Drug
Control and Research, for his supervision, precious advice given throughout
the whole study. He was an important support throughout this work. I wish
to express my deep thanks and gratitude to my family for their constant help
and encouragement. Finally I wish to dedicate this thesis to the soul of my
father (**Prof.Dr. Mohamed Mansour Sayed Mansour**) who taught me the
meaning of life.

CONTENTS

Page
ABSTRACT I
LIST OF TABLESVII
LIST OF FIGURESIX
LIST OF ABBREVIATIONSXIII
1. INTRODUCTION 1
2. REVIEW OF LITERATURE 4
2.1. Obesity
2.1.1. Causes of obesity and overweight
2.1.2. Childhood obesity
2.2. Nutraceutical food
2.2.1 Nutraceutical terms
2.2.2. The functional food
2.2.2. Functional food against obesity
2.3. Whole grains
2.3.1. Oat
2.3.2. Oat functional food
2.4. Cheese whey
2.4.1. Definition of whey cheese
2.4.2. Environmental effect of sweet cheese whey as waste
2.4.3. Nutritional value of whey cheese
2.4.4. Health effect of whey protein
2.5. Reduced calorie biscuits
2.6. Reduced calorie cookies
3. MATRIALS AND METHODS22
3.1. MATERIALS
3.1.1. Raw materials
3.1.2. Chemicals
3.1.3. Experimental animals
3.2. METHODS
3.2.1. Preparation of biscuits

3.2.2. Preparation of crackers	23
3.2.3. Proximate chemical analysis	24
3.2.4. Antioxidant status assay	25
3.2.4.1. DPPH-radical scavenging activity	25
3.2.4.2. Determination of total phenolic contents (TPC)	26
3.2.5. Sensory attributes for biscuits and crackers	26
3.3. Biological evaluation	26
3.3.1. Basal diet	26
3.3.2. Biological Experimental design	28
3.3.3. Growth performance evaluation	29
3.3.4. Biochemical Analysis procedures and techniques	30
3.3.4.1. Lipid profile parameters	30
(a). Determination of plasma total cholesterol	30
(b). Determination of plasma total triglycerides	30
(c). Low density lipoproteins cholesterol (LDL)	31
(d). High density lipoproteins cholesterol (HDL)	31
3.3.4.2. Liver function enzymes tests	31
3.3.4.3. Determination of glucose	32
3.3.3.4. Kidneys function tests	32
(a). Determination of plasma urea concentration	32
(b). Determination of plasma creatinine concentration	32
3.3.5. Histological examination	33
3.3.6. Statistical analysis	33
4. RESULTS AND DISCUSSION	34
4.1. Proximate composition of biscuits and crackers	34
4.1.1.Chemical composition of biscuits	34
4.1.2.Chemical composition of crackers	35
4.2. Antioxidant status of oat, cheese whey, biscuits and crackers	36
4.3. Influence of oat and sweet cheese whey addition on biscuits and	
crackers sensory attributes	.37
4.4. Biological evaluation	41
4.4.1. Effect of different groups on growth rate in rats	41

4.5. Effect of the different rat groups of each feeding interval on ser	um
glucose levels	. 42
4.6. Effect of the different rat groups of each feeding interval on ser	um
lipid profiles	. 44
4.7. Effect of the different rat groups of each feeding interval on ser	um
liver function	. 47
4.8. Effect of the different rat groups of each feeding interval on ser	um
kidney function parameters	. 50
4.9. Histopathology examination	. 53
4.9.1. Histopathological alterations in liver	. 53
4.9.2. Histopathological alterations in Kidneys	. 66
4.9.3. Histopathological alterations in Heart	. 72
4.9.4. Histopathological alterations in abdominal fat	. 77
5. SUMMARY AND CONCLUSION	. 93
6. REFERENCES	.98

LIST OF TABLES

No.	Title	Pag e
3.1	Biscuits formulas	23
3.2	Crackers formulas	24
3.3	Composition of the salts per 1 Kg salts mixture	27
3.4	Composition of vitamins per 1 Kg vitamin mixture	27
3.5	Feed composition of rat groups (%)	29
4.1	Influence of oat and sweet cheese whey addition on proximate composition of biscuits formulas (g/100g)	35
4.2	Influence of oat and sweet cheese whey addition on proximate composition of crackers formulas (g/100g)	36
4.3	Antioxidant status of oat, whey cheese, biscuits and crackers	37
4.4	Influence of oat and sweet cheese whey addition on biscuits Sensory attributes	39
4.5	Influence of oat and sweet cheese whey addition on crackers Sensory attributes	40
4.6	Growth performance parameters of different rat groups	42
4.7	Glucose levels of different rat groups at interval experimental periods	43
4.8	Lipid profiles of different rat groups at zero time	44
4.9	Lipid profiles of different experimental groups after 30 days	45
4.10	Lipid profiles of different experimental groups at the	46

No.	Title	Pag
		е
	end of experimental period	
4.11	Liver function enzymes of different rat groups at zero	48
	time	40
4.12	Liver function enzymes of different rat groups after 30	49
	days	49
4.13	Liver function enzymes of different rat groups at the	49
	end of experiment	49
4.14	Kidneys function parameters of different rat groups at	51
	zero time	31
4.15	Kidneys function parameters of different experimental	52
	groups after 30 days	32
4.16	Kidneys function parameters of different experimental	52
	groups at the end of experimental	32
4.17	Histopathological severity alterations in the different	83
	organs of the rat groups.	83

LIST OF FIGURES

No.		Page
1	Different biscuits formulae represented B0: control Biscuits; B1, B2, B3 & B4: Biscuits formula with 10% Whole Oat of Wheat flour and sweet cheese whey by blending ratio with whey cheese.	39
2	Different Crackers formulae represented C0: control Crackers; C1, C2, C3 & C4: Crackers formula with 10% Whole Oat of Wheat flour and Sweet cheese whey by blending ratio with whey cheese.	40
3	Photomicrograph of liver tissue section of negative control rat (H&E, 40×).	55
4	Photomicrograph of liver tissue section of HFD group (positive control) (H&E, 40×).	55
5	Photomicrograph of liver tissue section of positive control rat (H&E, 40×).	56
6	Photomicrograph of liver tissue section of positive control rat (H&E, 64×).	56
7	Photomicrograph of liver tissue section of positive control rat (H&E, $40\times$).	57
8	Photomicrograph of liver tissue section of positive control rat (H&E, $40\times$).	57
9	Photomicrograph of liver tissue section of HFD + control Biscuit rat (H&E, 40×).	58
10	Photomicrograph of liver tissue section of HFD + control Biscuit rat (H&E, 40×).	58
11	Photomicrograph of liver tissue section of HFD + low calorie Biscuit formula three group of rats (H&E, 40×).	59
12	Photomicrograph of liver tissue section of HFD + low calorie Biscuit formula three group of rats (H&E, 16×).	59
13	Photomicrograph of liver tissue section of HFD + low calorie Biscuit formula three group of rats (H&E, 40×).	60
14	Photomicrograph of liver tissue section of HFD + low calorie Biscuit formula three group of rats (H&E, 64×).	60
15	Photomicrograph of liver tissue section of HFD + low calorie Biscuit formula four group of rats (H&E, 16×).	61
16	Photomicrograph of liver tissue section of HFD + low calorie Biscuit formula four group of rats (H&E, 40×).	61
17	Photomicrograph of liver tissue section of HFD + control	62

No.		Page
	crackers group of rats (H&E, 40×).	
18	Photomicrograph of liver tissue section of HFD + control crackers group of rats (H&E, $40\times$).	62
19	Photomicrograph of liver tissue section of HFD + control crackers group of rats (H&E, 64×).	63
20	Photomicrograph of liver tissue section of HFD + control crackers group of rats (H&E, 40×).	63
21	Photomicrograph of liver tissue section of HFD + low calorie crackers formula three group of rats (H&E, $40\times$).	64
22	Photomicrograph of liver tissue section of HFD + low calorie crackers formula four group of rats (H&E, 16×).	64
23	Photomicrograph of liver tissue section of HFD + low calorie crackers formula four group of rats (H&E, 40×).	65
24	Photomicrograph of liver tissue section of HFD + low calorie crackers formula four group of rats (H&E, 40×).	65
25	Photomicrograph of kidney tissue section of negative control rat (H&E, 40×).	67
26	Photomicrograph of kidney tissue section of positive control (HFD group) rat (H&E, 40×).	67
27	Photomicrograph of kidney tissue section of positive control (HFD group) rat (H&E, $40\times$).	68
28	Photomicrograph of kidney tissue section of the HFD + control Biscuit group of rat (H&E, 40×).	68
29	Photomicrograph of kidney tissue section of the HFD + low calorie Biscuit formula three group of rat (H&E, 40×).	69
30	Photomicrograph of kidney tissue section of the HFD + low calorie Biscuit formula four group of rat (H&E, 40×).	69
31	Photomicrograph of kidney tissue section of the HFD + low calorie Biscuit formula four group of rat (H&E, 40×).	70
32	Photomicrograph of kidney tissue section of the HFD + control crackers group of rat (H&E, $40\times$).	70
33	Photomicrograph of kidney tissue section of the HFD + low calorie crackers formula three group of rat (H&E, 40×).	71
34	Photomicrograph of kidney tissue section of the HFD + low calorie crackers formula four group of rat (H&E, 40×).	71
35	Photomicrograph of heart tissue section of the negative	73

No.		Page
	control rat (H&E, 40×).	
36	Photomicrograph of heart tissue section of the HFD group (positive control) (H&E, 40×).	73
37	Photomicrograph of heart tissue section of the HFD group (positive control) (H&E, 40×).	74
38	Photomicrograph of heart tissue section of the HFD $+$ control Biscuit group (H&E, $40\times$).	74
39	Photomicrograph of heart tissue section of the HFD + low calorie Biscuit formula three group (H&E, $40\times$).	75
40	Photomicrograph of heart tissue section of the HFD + low calorie Biscuit formula four group (H&E, $40\times$).	75
41	Photomicrograph of heart tissue section of the HFD + control crackers group (H&E, $40\times$).	76
42	Photomicrograph of heart tissue section of the HFD + low calorie crackers formula three group (H&E, $40\times$).	76
43	Photomicrograph of heart tissue section of the HFD + low calorie crackers formula four group (H&E, 40×).	77
44	Photomicrograph of abdominal fat tissue section of the negative control rat (H&E, 40×).	78
45	Photomicrograph of abdominal fat tissue section of the negative control rat (H&E, 64×).	79
46	Photomicrograph of abdominal fat tissue section of the HFD group (positive control) rat (H&E, 40×).	79
47	Photomicrograph of abdominal fat tissue section of the HFD+control Biscuit group (H&E, 40×).	80
48	Photomicrograph of abdominal fat tissue section of the HFD+low calorie Biscuit formula three group shows no histopathological alteration. (H&E, 40×).	80
49	Photomicrograph of abdominal fat tissue section of the HFD+low calorie Biscuit formula four group (H&E, $40\times$).	81
50	Photomicrograph of abdominal fat tissue section of the HFD+control crackers group (H&E, 40×).	81
51	Photomicrograph of abdominal fat tissue section of the HFD+low calorie crackers formula three group (H&E, 40×).	82
52	Photomicrograph of abdominal fat tissue section of the HFD+low calorie crackers formula four group (H&E, 40×).	82