

بسم الله الرحمن الرحيم

 $\infty \infty \infty$

تم رفع هذه الرسالة بواسطة / هناء محمد علي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

		4534		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(m) (m)		00	ملاحظات:
		حامعتهت		
	since	1992	1.53	

بركات وتكنولوجياراه

Assessment of Diaphragmatic Mobility by chest Ultrasound and Basic Echocardiography in Patients with Malignant Pleural Effusion Undergoing Pleurodesis

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Chest Diseases

By

Eman Mohamed Elbaz Ibrahim

Master Degree, 2017 Ain Shams University

Under supervision of

Dr. Adel Mohamad Saeed

Professor of Chest Diseases Faculty of Medicine - Ain Shams University

Dr. Ashraf Adel Gomaa

Assistant Professor of Chest Diseases Faculty of Medicine - Ain Shams University

Dr. Hieba Gamal Ezzelregal

Assistant Professor of Chest Diseases Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2022

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Dr. Adel Mohamad Saeed**, Professor of Chest Diseases, Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Ashraf Adel Gomaa**, Assistant Professor of Chest Diseases, Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Hieba Gamal Ezzelregal**, Assistant Professor of Chest Diseases, Faculty of Medicine - Ain Shams University, for her great help, active participation and guidance.

Finally, I would like to express my deep thanks to My

Family who were always beside me giving me all forms of support to accomplish this work.

Eman Mohamed Elbaz

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	4
Review of Literature	
Malignant Pleural Effusion	5
Chest Ultrasonography	43
Overview on Basic Echocardiography	59
Patients and Methods	81
Results	95
Discussion	115
Summary and Conclusion	133
Recommendations	139
References	140
Arabic Summary	

List of Abbreviations

Abb.	Full term
2D	Two-dimensional
ADA	Adenosine deaminase
AR	Aortic regurgitation
AS	
ASS	Absent sliding score
AV	Aortic valve
Cm	Centimeter
COPD	Chronic obstructive pulmonary disease
	Computed tomography
CV	Chamber view
<i>CW</i>	Continuous-wave doppler
CXR	Chest x-ray,
DE	Diaphragmatic excursion
DM	Diabetes mellitus,
DTF	Diaphragmatic thickness fraction
ECG	Continuous electrocardiograph
EF	Ejection fraction
EGFR-TKIs	Epidermal growth factor receptor tyrosine kinase inhibitors
ERS/EACTS	European respiratory society/european association of cardiothoracic society
HS	Highly significant
HTN	Hypertension
IHD	Ischemic heart disease
IPC	Indwelling pleural catheter
	Inferior vena cava
IVS	Inter-ventricular septum
LA	
LDH	Lactate dehydrogenase

List of Abbreviations Cont...

Abb.	Full term
LV I	eft ventricle.
	Eft ventricular diameter in diastole
LVDs I	eft ventricular diameter in systole
	eft ventricular function
	Malignant pleural effusions
MRI	Magnetic resonance imaging
MV	Mitral valve
NS N	Von significant
NSCLC N	Non-small cell lung cancer
PW F	Pulsed-wave doppler
RA F	Right atrium
RV F	Right ventricle,
S S	Significant
SD S	Standard deviation
TAPSE	ricuspid annular plane systolic excursion
TR T	ricuspid regurge,
TTE 1	ransthoracic echocardiography
TV T	ricuspid valve
US U	Jltrasonography
VATS V	Video-assisted thoracoscopic surgery
VEGF	ascular endothelial growth factor

List of Tables

Table No.	Title	Page No.
Table (1):	The Causes of paramalignant Effusion	on 7
Table (2):	Sonographic anatomic classification on quantity of pleural effusions	n based
Table (3):	LVDd in mm	88
Table (4):	LVDs in mm	88
Table (5):	Demographic data, characteristics morbidities distribution of the patients	studied
Table (6):	The main complaint among the patients	studied
Table (7):	CXR findings, Characteristics of the Fluid and method of instilla sclerosing agent among the patients.	Pleural tion of studied
Table (8):	Basic echo parameters among the patients	
Table (9):	Lung sliding before and after ple among the studied patients	
Table (10):	Follow up of diaphragmatic excursio and after pleurodesis	
Table (11):	Comparison between pericardium and after pleurodesis among the patients	studied
Table (12):	Outcome of the studied patients sonographic findings after 2 mo pleurodesis	s based onths of
Table (13):	Relation between outcome of the patients with age and sex	studied
Table (14):	Relation between the outcome and charachteristics of the studied patien	

List of Tables Cont...

Table No.	Title	Page No.
Table (15):	Relation between the outcome as different effusion characteristics	
Table (16):	Relation between the outcome and the sliding before, after 2 weeks and months of pleurodesis.	after 2
Table (17):	Relation between the outcome diaphragmatic excursion before an pleurodesis	d after
Table (18):	Relation between the outcome of pleu and Echo parameters among the patients	studied
Table (19):	Relation between the outcome of pleu and different ECHO characteristics the studied patients.	among

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Posterior longitudinal scan in a patient, with sector probe showing flowing pleural effusion at the base hemithorax	a free- e of the
Figure (2):	Hyperechoic pleural line and uncommal aerated lung on low free probe view	equency
Figure (3):	Seashore sign in M mode, confirming sliding	
Figure (4):	Longitudinal and transverse sca convex probe of a loculated effusion	
Figure (5):	Upper left, anechoic effusion	52
Figure (6):	Collateral findings in the diagn	
Figure (7):	Left, pleural thickening caused by a due to asbestosis	
Figure (8):	Growths of the diaphragmatic observable in the presence of effusign of secondary involvement pleura	of the
Figure (9):	Diaphragm in B- and M-mo spontaneous breathing(A) and in respiration (B)	forced
Figure (10):	M-mode sonography of diaphra	_
Figure (11):	Mechanical and electronic transduc	ers 60
Figure (12):	M mode imaging	61
Figure (13):	Continuous wave Doppler (CW)	62
Figure (14):	Pulsed wave Doppler (PW)	63

List of Figures Cont...

Fig. No.	Title	Page No.	
Figure (15):	Patient in left lateral decubitus pos	ition 65	
Figure (16):	Patient in supine position		
Figure (17):	Patient in left lateral decubitus pos	ition 66	
Figure (18):	The marker dot towards the right si	houlder 67	
Figure (19):	Parasternal long-axis view	68	
Figure (20):	The marker dot towards the right shoulder short axis view		
Figure (21):	Parasternal short-axis views	70	
Figure (22):	The marker dot pointing down towaleft shoulder		
Figure (23):	Apical views	73	
Figure (24):	Subcostal 4-chamber view	74	
Figure (25):	RV-focused view	76	
Figure (26):	TAPSE measured by M mode	77	
Figure (27):	Echocardiogram shows a large ampericardial effusion (identified white arrows)	by the	
Figure (28):	Representative echocardiographic of cardiac tamponade	-	
Figure (29):	Diaphragm in B- and M-mo spontaneous breathing(A) and in respiration (B)	forced	
Figure (30):	Basic echocardiography was per using a portable echo machine (S SONOLINE G60 S system, USA)	Siemens	
Figure (31):	M-mode of left ventricle used to e cavity dimensions in systole and cand wall thickness	liastole,	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (32):	Assessment of LV ejection fraction mode	
Figure (33):	Measurement of right internal middimension	•
Figure (34):	TAPSE measurement by M-mode is four-chamber view.	_
Figure (35):	Showed continuous wave Dopy tricuspid regurge	
Figure (36):	Assessment of severity of TR by cole Doppler	
Figure (37):	Method of diagnosis among the patients	
Figure (38):	Histopathological findings amore studied patients	•
Figure (39):	Method of instillation of sclerosing	agent 98
Figure (40):	Follow up for diaphragmatic exbefore pleurodesis, then 2 weeks months after pleurodesis	and 2
Figure (41):	Comparison between pericardium and after pleurodesis among the patients	studied
Figure (42):	Sonographic pleurodesis outcome months follow up	
Figure (43):	Relation between the outcome a amount of effusion among the patients	studied
Figure (44):	Relation of outcome with lung before pleurodesis	•

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (45):	Relation of outcome w	rith LV EF% of the
Figure (46):	Relation between to pericardial effusion a patients	

Introduction

The aim of pleurodesis is to achieve a symphysis between visceral and parietal pleural layers, in order to prevent accumulation of either air or fluid in the pleural space. Its main indications are malignant pleural effusions and pneumothorax (Rodriguez-Panadero and Antony, 1997).

Pleurodesis can be done chemically or surgically chemicals such as Bleomycin, Tetracycline, Povidone iodine and talc (Chen et al., 2013).

Chemical pleurodesis involves the intrapleural instillation of a sclerosant through a chest catheter or by thoracotomy or thoracoscopy. Chemical pleurodesis by chest catheter uses an intercostal catheter to drain pleural fluid, reexpand the lung against the chest wall, and instill a sclerosant. Large-bore (20 to 32F) surgical chest tubes have become obsolete in preference for small-bore pigtail catheters (9 to 14F), which improve patient tolerance, provide options for outpatient pleurodesis, and have equivalent rates of success (*Caglayan et al.*, 2008).

Pleurodesis will certainly fail if the lung cannot fully expand to the chest wall (eg, trapped or entrapped lung, interstitial pulmonary fibrosis, endobronchial obstruction) because successful pleurodesis requires contact of the visceral and parietal pleura. Chemical pleurodesis should therefore not

be attempted when full lung expansion to the chest wall does not occur after therapeutic thoracentesis. Patients whose lungs cannot fully expand usually have radiographic evidence of a pneumothorax after thoracentesis or experience chest discomfort during thoracentesis before all pleural fluid is drained (Doelken, 2008).

A complete response is usually defined as no reaccumulation of pleural fluid after pleurodesis until death, and a partial response as partial re-accumulation of fluid radiographically but not requiring further pleural intervention such as aspiration. However, some studies use a 30 day cut-off (British Thoracic Society, 2009).

The most common adverse sequelae of chemical pleurodesis are fever, pain, and Gastrointestinal symptoms (Shaw and Agarwal, 2004).

Diaphragm is the principal generator of tidal volume in normal subjects at rest. Studies have shown that the impairment of diaphragm mobility might be associated with alterations in the principal pulmonary function parameters (Yamaguti et al., 2008).

Over the past few years, ultrasound has also been used to evaluate diaphragmatic mobility, since it offers advantages over fluoroscopy: portability; no exposure to ionizing radiation; and direct quantification of diaphragmatic movement (Houston et al., 1995).