Salwa Akl

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

-Call +600-2

Salwa Akl

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Salwa Akl

بعض الوثائق الأصلية تالفة وبالرسالة صفحات لم ترد بالأصل

Minufiya University
Faculty of Engineering
Civil Engineering Department

B18506

ANALYSIS OF THE COMBINED BEHAVIOR OF PILE GROUPS UNDER VERTICAL LOADING

By

MOHAMED ABDEL HAMID MOSTAFA

B.Sc., M.Sc Civil Engineering,

A Thesis submitted in partial fulfillment for the requirements of the degree of

PhD Degree in Engineering

(Structural Engineering)

In the field of Soil Mechanics and Foundations

Dr. Abd-El Fatah Youssef

Professor of Soil Mechanics and Foundations Engineering, Faculty of Engineering

Minufiya University.

Supervisors

Dr. Amr Mohamed Radwá

Professor of Soil Mechanics and Foundations Engineering, Formerly, Dean of Faculty of Engineering at Mataria,

Helwcan University.

Dr. Maher Taha El Nemer

Assistant professor of Soil Mechanics

and Foundations Engineering,

Faculty of Engineering

Minufya University

A.M. Kingus

M. EL Nemr

Minufiya University Faculty of Engineering Civil Engineering Department

ANALYSIS OF THE COMBINED BEHAVIOR OF PILE GROUPS UNDER VERTICAL LÓADING

By

MOHAMED ABDEL HAMID MOSTAFA

B.Sc., M.Sc Civil Engineering,

A Thesis submitted in partial fulfillment for the requirements of the degree of

PhD Degree in Engineering

(Structural Engineering)

In the field of Soil Mechanics and Foundations

Examiners Committee

Dr. Abd- El Rahman Omar Handy

Professor of Soit Mechanics and

Foundations Engineering,

Formerly, Dean of Faculty of

Engineering at Mataria,

Helwan University.

Dr. Amr Mohamed Radwag

Professor of Soil Mechanics and

Foundations Engineering,

Formerly, Dean of Faculty of

Engineering at Mataria,

Helwan University.

(supervisior)

Dr. Abelsalam M. Salem

Professor of Soil Mechanics and

Foundations Engineering,

Faculty of Engineering,

Cairo University.

Dr. Abd-El-Fatah Youssef

Professor of Soil Mechanics and

Foundations Engineering,

Faculty of Engineering

Minufiya University.

Kin 443 (supervisior)

1999

ACKNOWLEDGMENTS

I would like to express my thanks and sincere gratitude to Dr. Abd El-Fatah Youssef, Professor of soil Mechanics and Foundations, Faculty of Engineering, Minufyia University, for his great efforts, continuous support and constructive guidance during preparation of this work. Also for generating many ideas and extensive suggestions, which greatly contributed in achieving this thesis.

My thanks and sincere gratitude to Dr. Amr Radwan, Professor of Soil Mechanics and Foundations, former Dean of Faculty of Engineering at Mataria, Helwan University, for his supervision, invaluable advice and encouragement throughout the work.

Sincere appreciations are due to Dr. Maher El-Nemer, Assistant professor of soil Mechanics and Foundations, Faculty of Engineering, Minufyia University, for his great efforts, continuous support and constructive guidance during preparation of thesis.

Many thanks to my parents and my wife for their patients during development of this work...

STATEMENT

This thesis is submitted to the Department of civil engineering faculty of engineering El Meniofia University for the award of Ph. D

Thesis title

ANALYSIS OF THE COMBINED BEHAVIOR OF PILE GROUPS UNDER VERTICAL LOADING

The work in this thesis has been carried out by the author.

No part of this thesis has been submitted to any other university or institute for the award of a degree or qualifications

Author name: Date:

The above statement has been signed by the thesis author

Supervisor

ABSTRACT

The development during the last decades created a great demand for use pile foundations. One of the most important factors in the analysis of piles is the settlement of the pile groups. This thesis is concerned about the study of the settlement of piles groups. A numerical method has been proposed in order to analyses a pile group embedded in arbitrary soil formation with non-linear soil behavior and considering the installation effect. The proposed method has been compared to other rigorous solutions as well as filed loading tests and satisfactory results were obtained.

The proposed method has been used to develop an easy and practical approach, which is, called <u>"Equivalent single pile approach</u>". In this approach the pile group is converted to an equivalent single pile for case of concrete floating piles in uniform soil and end bearing piles. The equivalent single pile will have the same load-settlement behavior and the same total base load of the pile group. Series of design charts have been developed for determining the dimensions of the equivalent single pile. The factors affecting the load-settlement behavior of the pile group are presented and discussed herein.

The equivalent single pile approach has been used in order to study the interaction between different pile groups in an easy way. A parametric study has been carried out in order to evaluate the factors affecting the interaction between different groups.

- Finally, based on the study and the analysis presented in the course of this thesis, a series of conclusions and recommendations was drawn regarding the settlement analysis and prediction of pile groups.

TABLE OF CONTENTS

LIS	T OF FIGURES	PAGE
LIS	T OF TABLES	
LIS	T OF APPENDICES	
NO	TATIONS	
СН	APTER 1 INTRODUCTION	1
1.1	General	1
1.2	Research Objectives	2
1.3	Thesis Outlines	3
< 1T ■	A 1940-195 M 1940-195 A 103-195 (1957) 1870-1870-187	,
	APTER 2 LITERATURE REVIEW	6
2.J	Introduction	6
2.2	Categories of Settlement Analysis for Single	7
Pile	and Pile Groups	
2.3	Empirical Methods (Category 1)	9
2.4	Elastic Methods (Category 2)	12
2.5	Load Transfer Methods (Category 3-A)	20
2,6	Finite Element Analysis (Category 3-B)	25
2.7	Experimental Studies	28
	2.7.1) General	28
	2.7.2) Full-scale tests	28
	2.7.3) Model tests	30
2,8	Estimating of Geotechnical Parameters	31
	2.8.1) General	31
	2.8.2) Methods of determining parameters	33
	2.8.3) Shaft resistance F _s	34

	2.8.4) End bearing resistance F _b	34
	2.8.5) Soil Young's Modulus E _s	35
	2.8.6) Poisson's ratio o	37
	2.8.7) Hyperbolic curve fitting constant $R_{\rm f}$	37
CH	APTER (3) MATHEMATICAL MODEL	54
3.1	Introduction	54
3.2	Main Assumptions	55
3.3	Method of Analysis	55
	3.3.1) General	. 55
	3.3.2) Single pile response	56
	3.3.3)single group	58
	3.3.4) Multiple groups.	60
3.4	Modification for the Suggested, Method of Analysis.	61
	3.4.1) General	61
	3.4.2) Pile compressibility	61
	3.4.3) Non linear soil behavior	62
	3.4.4) Pile - soil slip	63
	3.4.5) Pile installation	63
3.5	Computer Program and Numerical Technique	65
3.6	Comparison With More Rigorous Solutions.	65
	3.6.1) Single pile in layer soil	65
	3.6.2) Pile group in homogenous soils	66
	3.6.3) Pile group in three-layered soils	67
3.7	Comparison with Observed Field Tests	67

ż

	3.7.1) General	67
	3.7.2) Driven piles in over-consolidated	68
	Houston Clay	
	3.7.2.1 General	68
	3.7.2.2 Pile and group description	68
	3.7.2.3 Soil formation and	68
	geotechnical properties	
	3.7.2.4 Loading tests	69
	3.7.2.5 Geotechnical analysis	69
	3.7.3) Bored Piles at Salihia School – Alexandria	70
	3.7.3.1 Pile and group description	70
	3.7.3.2 Soil formation and	70
2	geotechnical properties	
	3.7.3.3 Analysis of single load test	71
	3.7.3.4 Analysis of pile group test	72
	CHAPTER (4) EQUIVALENT SINGLE PILE APPROA	ACH AND
	DESIGN CHARTS	88
	4.1 Introduction	88
	4.2 Main Concept of the Equivalent Single Pile Method	89
	4.3 Numerical Method	89
	4.4 Factors Affecting the Shaft and Base Diameter	
	of the Equivalent Pile	90
-	4.4.1) Pile spacing	90
	4.4.2) Pile length	. 90
	4.4.3) Pile material Type	90
	4.4.4) Soil young's and shear modulus profile	91
	4.4.5) Soil Young's modulus	91

4.4.6) Poisson's ratio	. 91
4.4.7) Soil non-linearity	91
4.4.8) Group arrangement	92
4.5 Design Curves for Determining the Shaft and Base D	iameter of the
Equivalent Single Pile	92
4.6 Behavior of Equivalent Single Pile	93
4.7 Illustration and Verification Examples	96
4.8 Using the Design Charts for Nonlinear Analysis	99
4.8.1) Methodology	99
4.8.2) Illustrative example:	100
4.8.3) Summary of results and concluded Results	103
4.9 Comparison between the Behavior of Single Pile and Pile	Group in the
View of the Equivalent Single Pile Approach	104
4.9.1) Settlement	104
4.9.2) Load distribution and safety factor of design	105
4.10 Factors Effect Behavior of Pile Group	107
4.10.1) Spacing between pile (spacing ration S/D)	107
4.10.2) Pile Length, pile diameter, length Ratio	108
4.10.3) Soil Young's modulus	110
4.10.4) Effect of Non Linearity	111
4.10.5) Effect of installation method	112
4.10.6) Effect of ratio between Eb/Es	114
4.11 Effect of Group Arrangement	115
=	
CHAPTER (5) INTERACTION BETWEEN	136
MULTIPLE GROUPS	
5.1 Introduction	136
5.2 Interaction Between Two groups	137

5.3 Interaction Factors	127
5.3.1) Numerical method	137
5.3.2) Effect of size difference between the	137
two adjacent equivalent single piles	137
5.4 Factors affecting the interaction factor α_{ij} between	
two groups i & j.	138
5.4.1) Spacing ratio (S/D _{st})	
	139
5.4.2)Pile length ratio (L/D _{si})	139
5.4.3) Soil Young's modulus	140
5.4.4) Effect of the ratio of E _b /E _S and D _b /D _S	140
5.4.5) Soil non-linearity	141
5.5 Design Curves for Determining Interaction Factors	142
5.6 Interaction Between Multiple Groups	
5.7 Illustration and Verification Examples	143
5.8 Summary of Results and Conclusion Remarks	l49
CHAPTER (6) SUMMARY, CONCLUSIONS AND	I55
RECOMMENDATIONS	122
6.1 Summary	155
6.2 Conclusions	157
6.2.1 With respect to the settlement and	157
the stiffness of the pile group	137
6.2.2 With respect to the settlement ratio	150
6.2.3 With respect to load sharing between	159
friction load and end bearing load	161
6.2.4 With respect to the interaction factor	141
between different pile groups.	161
6.3 Recommendations	163
	163

6.3.1 Recommendations for choosing pile geometry	163
6.3.2 Recommendations for group arrangement	164
6.3.3 Recommendations for choosing safety	164
factors for design	
6.3.4 Recommendations for choosing appropriate	165
soil model for settlement analysis of pile group	
6.3.5 Recommendations for choosing soil parameters	166
6.3-6 Recommendations for considering	166
interaction between different pile groups	

REFERENCES

APPENDIX 1

DESIGN CURVES

APPENDIX 1.1

Design curves series 1 - for determining dimension of the equivalent single pile

APPENDIX 1.2

Design curves series 2 - for determining group stiffness of the equivalent single pile

APPENDIX 1,3

Design curves series 3 - for determining percentage of the base load for the equivalent single pile

Fig 3.5	Comparison of group stiffness for three different pile groups
	in homogeneous soil
Fig 3.6	Comparison of load distribution in 3 x 3 pile group in
	homogenous soil
Fig 3.7	Comparison of load distribution in 4 x 4 pile group in
	homogenous soil
Fig 3.8	Comparison of interaction factors in three - layered soil
Fig 3.9	Summary of available geotechnical data-Houston site (Poulos
	1993)
Fig 3.10	Results of single pile and pile groups load test (Houston site)
Fig 3.11	Measured versus computed load-settlement relation for pile
	groups load test (Houston site)
Fig 3.12	Results of single pile load test (Salihia site- Alexandria)
Fig 3.13	Results of two-pile group load test (Salihia site- Alexandria)
Fig 3.14	Measured versus computed load-settlement relation for single
	pile load test at different values of sand modulus (Salihia site)
Fig 3.15	Measured versus computed load-settlement relation for two-
	pile group load test considering sand modulus concluded from
	single pile load test (Salihia site)
Fig 3.16	Measured versus computed load-settlement relation for two-
	pile group load test considering installation effect (Salihia
	site)
Fig 4.1	Group perimeter and area used to determine dimensions of
	equivalent single pile
Fig 4.2	Typical relation between number of piles (n) and the
	reduction factor Re
Fig 4.3.a	Load settlement curve for single pile