Impact of Direct Acting Antivirals Agents on kidney function in Hepatitis C Virus infected patients with chronic kidney disease

A Thesis

Submitted for partial fulfillment of M.D degree in Internal Medicine

By Wedad Adel Mahmoud Abdo

M.B.B.Ch, M.SC Faculty of Medicine-Ain Shams University

Under Supervision of

Prof. Dr. Iman Ibrahim Sarhan

Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain-Shams University

Prof. Dr. Osama Mahmoud Kamal

Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain-Shams University

Prof. Dr. Hayam Ahmed Hebah

Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain-Shams University

Prof.Dr. Ossama Ashraf Ahmed

Professor of Internal Medicine and Gastroenterology Faculty of Medicine - Ain-Shams University

Dr. Lina Essam Khedr

Lecturer of Internal Medicine and Nephrology Faculty of Medicine - Ain-Shams University

> Faculty of Medicine Ain Shams University

> > **2020**

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work,

My deepest gratitude to my supervisor, **Prof. Dr. Iman Ibrahim Sarhan**, Professor of Internal Medicine and Nephrology, Faculty of Medicine - Ain-Shams University, for her valuable guidance and expert supervision, in addition to her great deal of support and encouragement. I really have the honor to complete this work under her supervision.

I would like to express my great and deep appreciation and thanks to **Prof. Dr. Hayam Ahmed Hebah,** Professor of Internal Medicine and Nephrology, Faculty of Medicine - Ain-Shams University, for her meticulous supervision, and her patience in reviewing and correcting this work.

I must express my deepest thanks to **Prof. Dr. Osama Mahmoud Kamal**, Professor of Internal Medicine and Nephrology, Faculty of Medicine - Ain-Shams University, for guiding me throughout this work and for granting me much of histime. I greatly appreciate her efforts.

I can't forget to thank with all appreciation **Prof.Dr. Ossama Ashraf Ahmed,** Professor of Internal Medicine and Gastroenterology, Faculty of Medicine - Ain-Shams University, whom tirelessly and freely gave comments on various drafts of this piece of work.

Last but not least my great thanks and gratitude to **Dr. Lina Essam Khedr,** Lecturer of Internal Medicine and Nephrology, Faculty of Medicine - Ain-Shams University, for the efforts and time she has devoted to accomplish this work.

Special thanks to my **Parents**, my **Husband** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

Wedad Adel Mahmoud Abdo

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Hepatitis C virus	5
HCV induced kidney diseases	29
Direct acting antiviral drugs	49
Patients and Methods	63
Results	73
Discussion	105
Summary	115
Conclusions and Recommendations	117
References	119
Arabic Summary	······

List of Abbreviations

Abbr. Full-term

AASLD : American Association for the Study of Liver Diseases

AKI : Acute kidney injury

ALT : Alanine aminotransferase

APRI : Aminotransferase/ platelet ratio index

CD : Cluster of differentiation

CKD : Chronic kidney disease

DAAs : Direct-acting antiviral agents

DAMPs: Damage-associated molecular patterns

EASL : European Association for the Study of the Liver

ER : Endoplasmic reticulum

ESRD : End-stage renal disease

FSGS : Focal segmental glomerulosclerosis

GFR : Glomerular filtration rate

HCC: Hepatocellular carcinoma

HCV: Hepatitis C virus

HD: Hemodialysis

HIV : Human immunodeficiency virus

HRS : Hepatorenal syndrome

HVPG: Hepatic venous pressure gradient

IDSA : Infectious Diseases Society of America

IFN: Interferon

INR : International normalized ratio

IRES: Internal Ribosome Binding Site

KDIGO: Kidney Diseases Improving Global Outcomes

KT : Kidney transplantation

MDRD: Modification of Diet in Renal Disease

MELD : Model for End-Stage Liver Disease

MPGN: Membranoproliferative glomerulonephritis

NK : Natural killer

NS : Nonstructural

NTPase : Nucleoside-triphosphatase

OMV/PTV/RTV Ombitasvir, Paritaprevir, and Ritonavir

PAMPs: Pathogen-associated molecular patterns

PAT : Parenteral anti-schistosomal therapy

PEG-IFN: Pegylated IFN

PLA2R : Phospholipase A2 receptor

Pr/Cr: Protein/creatinine

PrOD : Paritaprevir/ritonavir/ombitasvir plus dasabuvir

RAAS : Renin-angiotensin-aldosterone system

RBV: Ribavirin

RF : Rheumatoid factor

RNA : Ribonucleic acid

SRB : Scavenger receptor class B

SVR : Sustained virological response

TE : Transient elastography

TIPS : Transjugular intrahepatic portosystemic shunt

TLR : Toll-like receptor

TNF: Tumor necrosis factor

WHO: World health organization

List of Tables

Table No.	Title	Page No.
Table (1):	Extrahepatic manifestations of infection	
Table (2):	Histopathological features of hepati virus-related renal involvement	
Table (3):	Brouet classification of cryoglobulinen	nia42
Table (4):	The four classes of direct-acting and agents	
Table (5):	Recommended direct-acting therapie eGFR and viral genotype (AASLD/IDS	•
Table (6):	Demographic data of all study popul (N=100)	
Table (7):	Clinical data of all study popul (N=100)	
Table (8):	Baseline investigations of the population	
Table (9):	Liver and kidney ultrasound of population (N=100)	
Table (10):	Comparison between the two study g regarding demographic data	
Table (11):	Comparison between the two grouregard Clinical data	
Table (12):	Comparison between the Ba investigations in both groups	
Table (13):	Change in renal functions (OMV/PTV/RTV) group	

Table (14):	Change in lab investigations in (OMV/PTV/RTV) group	83
Table (15):	Change in Hemoglobin level in (OMV/PTV/RTV) group	84
Table (16):	Change in renal functions in (SOF/DAC) group	84
Table (17):	Change in lab investigations in (SOF/DAC) group	87
Table (18):	Change in Hemoglobin level in (OMV/PTV/RTV) group	88
Table (19):	Comparison between two groups regarding change in eGFR	89
Table (20):	Comparison between two groups regarding change in creatinine level	91
Table (21):	Comparison between two groups regarding change in protein/ creatinine ratio	92
Table (22):	Linear regression analysis for predictors of change in eGFR	92
Table (23):	Comparison between CKD stages regarding change in eGFR and serum creatinine	93
Table (24):	Comparison between side effects in both groups	94
Table (25):	Comparison between the different CKD stages as regard side effects	95
Table (26):	Comparison between hepatic decompensation in both groups	96
Table (27):	Comparison between groups as regard on treatment Anemia	97
Table (28):	Relation between patients received Ribavirin and Anemia	98

•	• .	c		1 1	
	ist	α t	10	h	ΔC
L	JI O L	O.	ı a	U	

Table (29):	Modification in Ribavirin during the study 99
Table (30):	Comparison between diabetics and non- diabetics regarding change in eGFR and
	serum creatinine

List of Figures

Figure No	Title Pa	ge No.
_	Genomic organization of the hepatitis virus	
0 \	Function of structural and non structural HCV proteins	
Figure (3):	Life cycle of HCV in hepatocytes	10
Figure (4):	Prevelence of HCV worldwide	14
	Countries with the highest prevalence HCV	
Figure (6):	Natural history of HCV	16
Figure (7):	Stages of liver cirrhosis	19
_	Scheme of investigations in suspect HCV infection	
Figure (9):	Chronic liver disease progression	23
_	Factors involved in the pathogenesis HRS	
	Inflammatory mediators and pathways to can affect the circulation	
Figure (12):	Light and electron microscopy of MPG	N 43
Figure (13): I	History of antiviral drugs	50
Figure (14): N	Metabolism of DDAs	51
	The HCV genome and target sites action for the direct acting antiv vagents	iral

Figure (16):	Gender distribution in the study population
Figure (17):	Distribution of CKD stages among the study population
Figure (18):	Follow up of eGFR in (OMV/PTV/RTV) group
Figure (19):	Follow up of serum creatinine in (OMV/PTV/RTV) group
Figure (20):	Follow up of eGFR in SOF/DAC group 85
Figure (21):	Follow up of serum creatinine in SOF/DAC group
Figure (22):	Comparison between follow up of eGFR in both groups
Figure (23):	Comparison between follow up of serum creatinine in both groups
Figure (24):	Comparison between CKD stages regarding change in eGFR and serum creatinine
Figure (25):	Comparison between the two groups as regard anemia
Figure (26):	Comparison between the patients received RBV and patients didn't receive RBV as regard anemia
Figure (27):	Comparison between diabetic and non diabetic patients as regard eGFR
Figure (28):	Comparison between diabetic and non diabetic patients as regard creatinine 101
Figure (29):	Comparison between diabetic and non diabetic patients as regard proteinuria 102

ABSTRACT

Introduction: Despite the significant link between HCV and CKD progression, most of the patients with CKD infected with HCV remain untreated, because they have historically been difficult to treat due to common adverse effects associated with interferon (IFN), ribavirin, and first generation protease inhibitors. Recently, there have been major advancements in the treatment of HCV with the development of new direct- acting antivirals (DAAs).

Objectives: To evaluate the safety and efficacy of DAAs and their impact on kidney function in CKD patients.

Patients and Methods: We conducted a prospective observational study on 100 CKD patients stages 3-4, receiving treatment for HCV at MASRI (faculty of Medicine Ain Shams University Research Institute), with two different DAAs regimens, completed over six months follow up. Kidney function was followed during and after treatment.

Results: Sustained virological response (SVR) was achieved in all patients. AKI (acute kidney injury) was uncommon; it occurred in three (3%) patients, out of them, two patients showed complete recovery. Adverse events were common (43%), but serious adverse events were uncommon (2%).Improvement of eGFR (8-15 ml/min/1.73 m²⁾ and proteinuria was found in both study groups.

Conclusion: DAAs were effective and well-tolerated for HCV infected patients with stage 3-4 chronic kidney disease, where viral clearance caused improvement in eGFR and proteinuria.

Keywords: Hepatitis C virus (HCV), Direct-acting antiviral (DAA), Chronic kidney disease (CKD).

Introduction

epatitis C virus (HCV) affects over 70 million people worldwide, corresponding to 1.0% of the global population. Public interest in HCV is growing, especially since the virus can also induce extrahepatic manifestations (in 40–70% of cases) including autoimmunity-related symptoms, metabolic, renal, cardiovascular, central nervous system or lymphoproliferative disorders (*Iliescu et al.*, 2020).

The prevalence of HCV infection is highest in Egypt ranging from 6% to 40% with an average of 14%. This is greatly attributable to the era of parenteral anti-schistosomal therapy (PAT) mass- treatment campaigns between the period of 1960-1980 (*El-Zanaty and Way, 2015*).

Hepatitis C virus (HCV) infection is strongly associated with chronic kidney disease (CKD). It is an independent risk factor for developing CKD, and significantly increases morbidity and mortality in patients with CKD (*Shuster et al.*, 2019).

It is well recognized that HCV infection can directly, via glomerulonephritis and cryoglobulinemic vasculitis, or indirectly, via hepatic cirrhosis and associated complications of portal hypertension, cause renal dysfunction and large-scale community observational studies have shown that HCV infection increases the risk for incident chronic kidney disease (CKD) and progression to end-stage renal disease (*Saxena & Terrault. 2016*).

Treatment for HCV infection has changed in the past few years with the introduction of direct-acting antiviral agents (DAAs) that have improved sustained virological response (SVR) compared with pegylated interferon-ribavirin (IFN \pm RBV), even in patients with chronic kidney disease (CKD) (*Pérez de José et al.*, 2020).

DAAs directly target viral proteins critical to HCV's replicative machinery and, when used in combination, produce cure rates of >97%. Despite of recent advances, little is known about the effect of HCV treatment with DAAs on short- or long-term kidney function. Whether or not the association of HCV with rapid CKD progression can be mitigated by HCV treatment has not yet been evaluated in the era of DAA therapies for HCV infection (*Sise et al.*, 2020).

In this context, HCV-infected patients with CKD stages 1 [glomerular filtration rate (GFR)>90 mL/min 1.73 m²], 2 (GFR 60–89 mL/min per 1.73 m²), and 3a (GFR 45–59 mL/min per 1.73 m²) should be considered to receive direct-acting antivirals (DAA), with the goal of slowing the progression of CKD. HCV-infected patients with CKD stages 3b (GFR 30–44 mL/min per 1.73 m²), 4 (GFR 15–29 mL/min