Salwa Akl

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

-Call +600-2

Salwa Akl

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Salwa Akl

بعض الوثائق الأصلية تالفة وبالرسالة صفحات لم ترد بالأصل

B18514

OESOPHAGEAL STRICTURES

Essay

Submitted for Partial Fulfillment of the Master Degree in General Surgery

MOHAMED ABD EL-WAHAB SAYEDAHMED
M.B.B.Ch.

Under Supervision Of

PROF. DR. HAMED RASHAD MESALLAM

Prof. of General Surgery
Chairman of the Department of General Surgery
Benha Faculty of Medicine
Zagazig University

PROF. DR. AHMED MAHMOUD ALL

Prof. of Cardiothoracic Surgery
Chairman of the Department of Cardiothoracid Surgery
Benha Faculty of Medicine
Zagazig University

PROF. DR. MOHAMED AMEIN SALEH

Prof. of General Surgery Benha Faculty of Medicine Zagazig University

DR. MOHAMED EL-SAYED EL-HAGARY

Ass. Prof. of General Surgery Benha Faculty of Medicine Zagazig University

BENHA FACULTY OF MEDICINE ZAGAZIG UNIVERSITY 2000

A.

ACKNOWLEDGMENT

Before all and above all, thanks to **ALLAH**, to whom I relate every success in my life.

I would like to express my deep thanks and gratitude to **PROF**. **HAMED RASHAD**, Professor & Head of General Surgery Department, Benha Faculty of Medicine, for his guidance, kind supervision encouragement and valuable comments.

I would like to express my deep thanks to *PROF. AHMED MAHMOUD ALI*, professor & head of Cardiothoracic Surgery, Benha Faculty of Medicine, for his planning, constant guidance, continuous help and kind supervision.

I am greatly honored to express my deepest gratitude and thanks to my *PROF. MOHAMED AMEIN SALEH*, Professor of General Surgery, for his kind encouragement, faithful support, unlimited help throughout my career and his valuable precious instructions during the preparation of this work.

I wish to express may very special thanks and consideration to my DR. MOHAMED EL-SAYED EL-HAGARY, Assistant Professor of General Surgery, for wonderful guidance, his continuous encouragement, intense constant follow up and for the long time he spent checking, correcting and updating my work.

LIST OF FIGURES

	LIST OF FIGURES	
Fig.	Title	Page.
1	Barium oesophagogram. A postero-anterior view. B- Lateral view. White arrow shows deviation to left. Black arrow shows return to midline. Black arrow on lateral view shows anterior deviation.	5
2	Topography of the oesophagus. UES = upper oesophageal sphincter, LES = lower oesophageal sphincter.	5
3	Arterial supply of the oesophagus.	11
4	Venous drainage of the pesophagus.	11
5	Wall thickness and orientation of libers on microdissection of the cardia. At the junction of the ocsophageal tube and gastric pouch, there is an oblique muscular ring composed of an increased muscle mass inside the inner muscular layer. On the lesser curve side of the cardia the muscle fibers of the inner layer are oriented transversely and form semicircular muscle fibers. On the greater curve side of the cardia, these muscle fibers from oblique loops that encircle the distal end of the cardia and gastric fundus. Both the semicircular muscle fibers and the oblique fibers of the fundus contract in a circular manner to close the cardia.	12
6	Attachments and structure of the phreno-oesophageal membrane. Transversails fascia lies just above the parietal peritoneum.	12
7	Innervation of the oesophagus.	20
8	Lymphatic drainage of the oesophagus.	20
9	Schematic representation of combined manometric pH recording system used in the evaluation of ocsophageal function. The triple-lumen perfused recording catheter measures intraluminal pressures from three levels in oesophagus, each separated from the next by 5cm. Measurements are made in terms of centimeters from the nostrils to the proximal opening of the recording catheter (PROX). The medial catheter (MED) records pressures 5cm. Distal to the proximal opening and the distal catheter (DIST), 5cm. Below this. The intraoesophageal pH electrode is used for documenting gastroesophageal reflux.	22

Fig.	Title	Page.
No.		
10	A severe damage to the esophagus from alkali ingestion. B, Transmural destruction and narrowing of the stomach by sulfuric acid ingestion. C, Intramural contrast,	39
ļ 	sacculation, ulceration, and fistulization indicate more severe burns.	
11	A- Severe stricture of the distal esophagus. B- The high stricture associated with a columnar cell-lined esophagus. C- A Schatzki ring at the squamocolumnar junction.	40
12	The upper bougie is a 60F: Maloney bougic. It is compared with a 2F gum elastic bougie filling the lumen of an esophagoscope. The lower two bougies show a 26F Hegar dilator.	106
13	Eder Puestow olives ranging from 21 to 58F. The flexible introducer with the olive mounted is passed over a guide wire under radiographic control in increasing sizes until optimal dilatation is achieved.	107
14	Eder-Puestow wire-directed dilation system, which works on the basis of interchangeable metal olives used to sequentially dilate tumors.	107
15	A, Celestin tube insertion is initiated with the passage of a pilot bougie which is retrieved through a small gastrotomy. B. The celestin tube is sutured to the proximal end of the pilot bougie. C. The bougie is guided into place through the tumor. The Celestin tube is trimmed to size and fixed to the lesser curve with a pledgeted suture.	108
16	Savary bougies are passed over a guide wire. The tapered Sitastic tips allow safe dilatation of the stricture.	109
17	The adjacent seromuscular layers of gastric fundus are approximated with two heavy nonabsorbable sutures incorporating some of the anterior wall of the esophagus. Note indwelling large-bore (42 to 46 French) bougie. (Reprinted with permission of the Lahey Clinic).	133
18	Completed fundoplication with reinforcing fine sutures of nonabsorbable material anchoring the collar of the wrap to the esophagus, being careful to preserve the vagus nerve. (Reprinted with permission of the Lahey Clinic.).	133

Fig.	Title	Page.
No.		
19	Lest colonic mobilization. The lest colon can be used to	134
	span either a short (A) or a long (B) esophageal defect. The	
	ascending limb of the left colic artery is the critical vessel.	105
20	Colon interposition: The short segment is used for the distal	135
	esophagus, and the long segment is anastomosed to the	
21	Lapparagnia total apphagatemy	137
22	Lapaorscopic total esophagetomy. A. Brachytherapy catheter and the method by which it is	142
22	placed over a guide-wire. B. Brachytherapy catheter in situ	142
	bridging the esophageal tumor.	
23	Various pulsion stents and endoscopically placed wire mesh	170
	stents. From top to bottom are examples of covered and	
	uncovered expandable metal Z stents and the Atkinson,	
	Witson-Cook, and Celestin pulsion stents.	
24	Three-field lymphadenectomy: extent of lymph node	179
	dissection in abdomen thorax, and cervical region (Akiyama	
	technique).	
25	Three of the five possible routes of explanted colon. A,	180
 	Substernal route, B. Transpleural route, C, Posterior	
	mediastinal route. If the substemal route is used, closure of the peritoneum is begun just caudal to the point where the	
	explant emerges from the abdomen and enters the	
	retrostemal space. Transpleural positioning of the graft may	
	be either anrerior or posterior to the hilum of the lung.	
26	Construction of the cervical esophagogastric anastomosis.	181
į ,	A-D, The two posterior quadrants are completed with the	
	knots tied on the inside of the tumen. E-G, The anterior two	
	quadrants of the anastomosis are completed with a 46	
	bougie (not show) within the esophagus to prevent	
	narrowing (Modified from Orringer MB: Esophageal	
	replacement after blunt esophagectomy. In Nyhus LM,	
	Baker RJ (eds), Mastery of Surgery, Boston, Little, Brown & Co., 1984).	
27	Final position of the intrathoracic stomach after transhiatal	181
6.7	esophagectomy. The gastric fundus is suspended from the	101
	prevertebral fascia several continueters above the cervical	
	anastomosis, and the pyloromyotomy is located 2-3 cm	
	below the diaphragmatic hiatus, (reproduced with pemission	
	of the C.V. Mosby Cop. From Orringer MB, Sloan H:	
	Esophagectomy without thoracotomy, J. Thorac Cardiovasc.	
	Surg., 76: 643, 1978).	

Ų

LIST OF TABLES

Table No.	Title	Page No.
1	Factors affecting distal high pressure zone (HPZ)	25
L	tone.	
2	Classification of benign strictures of the oesophagus.	28

LIST OF ABBREVIATIONS

CES	Congenital oesophageal stenosis
CMV	Cytomegalo virus.
CTM	Combined treatment modalities.
EÄ	Esophageal atresia
ECOG	Oeastern cooperation oncology group
EORTC	European Organization for Research & Treatment of Cancer
EUS	Endoscopic ultrasonography
EUS-FNA	Endoscopic ultrasonography- fine needle aspiration
FEV1	Forced expiratory volume in 1st second
FMS	Fibro muscular stenosis
5-FU	5- fluorouracil
GERD	Gastroesophageal reflux diseases
HGD	High grade dysplasia
HPZ	High pressure zone
H2RA	Histamine 2 receptor antagonist
HSV	Herps semplix virus
LASER	Light amplification by stimulated emission of radiation
LES	Lower oesoplaseal sphincter
LGD	Low grade dysplasia
Nd:YAG	Neodymium: Ytrium-Aluminum-Garnt
PIP	Pressure inversion point
PPI	Proton pump inhibiter
SART	Standard acid reflux test
SEMS	Self expanding metal stents
THE	Transhiata, oesophagectomy
UES	Upper oesophageal sphincter

OESOPHAGEAL STRICTURES CONTENTS

3 W. . . .

	Page
1- Introduction and aim of the work	1
2- Embryologic & Anatomic consideration	3
3- Physiologic consideration	21
4- Aetiology and types of oesophageal strictures	28
5-Diagnosis of oesophageal strictures and functional	
evaluation of oesophagus	80
6- Nutritional aspect of oesophageal strictures	95
7- Treatment of osophageal strictures	102
8- Summary	188
9- Recommendation	192
10- References	193
11- Arabic _i sjummary	

INTRODUCTION AND AIM OF THE WORK

7

OESOPHAGEAL STRICTURES

Introduction:

Sweet 1970, defined the oesophageal strictures as follows, "The term stricture is applied to any unyeilding cicatritial stenosis caused by the contraction of scar tissue, in contradistinction to the stenosis which results from edematous swelling, a new growth, external compression or a congenital anomaly". This is a quite satisfactory definition, only we want to remark that cicatricial stenosis can occur as a congenital anomaly. By this collective definition the following causes of oesophageal stenosis can be excluded:

- 1- Oesophageal motility disorders e.g., achalasia.
- 2- Extraoesophageal compressing lesions.
- 3-Intraluminal swelling encroaching on the oesophagus but not congenital strictures.

(Haller and Bachman, 1984)

Allen et al. (1990) defined oesophageal stricture endoscopically as a narrowing of the oesophageal lumen that prevents passage of the endoscope or allows only a forceful passage.

A stricture of the oesophagus causes a particular problem for the affected patient; dysphagia, or difficulty in swallowing. This symptom predominates whatever the underlying cause of the stricture, benign or malignant. Relief of dysphagia is the ultimate goal in the treatment of oesophageal stricture, and there have been major changes in recent years in instruments and techniques to achieve this purpose. Methods involved

ģ.

can be broadly classified into mechanical, thermal, or chemical (Haller & Andrews, 1981).

Mechanical methods are usually employed for benign stenosis, while all three types of therapy have been applied for recanalization of malignant strictures. The underlying principle for all of these methods is one of controlled force. The goal of opening the oesophageal lumen must balanced against the imperative to avoid damage to normal tissues, with particular care to insure that most headed injury to the oesophagus is perforation (Haller and Bachman, 1984).

AIM OF THE WORK

The aim of this work is to review the literature discussing different etiologies, pathology and clinical presentation of the oesophageal lesions causing oesophageal strictures, as well as including methods of diagnosis and treatment, different old & recent techniques, to reach this purpose.