

# بسم الله الرحمن الرحيم

 $\infty\infty\infty$ 

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد





# A Systematic Review for Simultaneous versus Delayed Ventriculo-Peritoneal Shunting in Surgical Repair of Meningomyelocele Sac in Patients with Chiari Type II Malformation

A Systematic Review

Submitted for Partial Fulfillment of Master's Degree (MSc) of Neurological and Spinal Surgery

By

#### **Omar Ahmed Adly**

M.B.B.Ch., Ain Shams University Resident at Ain Shams University Hospitals

Under Supervision of

#### Prof. Dr. Salah Abd El Khalek Hemida

Professor of Neurological and Spinal Surgery Faculty of Medicine - Ain Shams University

#### **Prof. Dr. Hazem Anter Mashaly**

Professor of Neurological and Spinal Surgery Faculty of Medicine - Ain Shams University

#### **Dr. Ahmed Maged Nagaty**

Lecturer of Neurological and Spinal Surgery Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University



سبورة البقرة الآية: ٣٢

#### Acknowledgments

First and foremost, I feel always indebted to Allah the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr. Salah Abd El Khalek, Professor of Neurological and Spinal Surgery, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Prof. Dr. Hazem Anter Mashaly, Professor of Neurological and Spinal Surgery, Faculty of Medicine, Ain Shams University, for his sincere efforts, fruitful encouragement.

I am deeply thankful to Dr. Ahmed Maged Nagaty, Lecturer of Neurological and Spinal Surgery, Faculty of Medicine, Ain Shams University, for his great help, outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Omar Ahmed Adly

### List of Contents

| Title                            | Page No. |
|----------------------------------|----------|
| List of Tables.                  | i        |
| List of Figures                  | ii       |
| List of Abbreviations            | v        |
| Introduction                     | 1        |
| Aim of the Work                  | 5        |
| Review of Literature             |          |
| Chapter 1: Neuroanatomy          | 6        |
| Chapter 2: Neuro-embryology      | 15       |
| Chapter 3: Pathophysiology       | 25       |
| Chapter 4: Clinical Presentation | 33       |
| Chapter 5: Investigations        | 40       |
| Chapter 6: Treatment             | 55       |
| Patients and Methods             | 69       |
| Results                          | 78       |
| Discussion                       | 84       |
| Summary and Conclusion           | 90       |
| References                       |          |
| Arabic Summary                   |          |

## List of Tables

| Table No | o. Title                                                                                                                   | Page No.             |
|----------|----------------------------------------------------------------------------------------------------------------------------|----------------------|
| Table 1: | Summary of inclusion and exclusion used in this review                                                                     |                      |
| Table 2: | Study Characteristics:                                                                                                     | 76                   |
| Table 3: | Clinical findings (Shunt infect<br>Simultaneous shunting vs Delayed shu<br>the study population post operative follo       | nting) of            |
| Table 4: | Clinical findings (Shunt Revis<br>Simultaneous vs Delayed Shunting) of t<br>population post operative follow up            | the study            |
| Table 5: | Clinical findings (Wound infection (m sac) in Simultaneous shunting vs shunting) of the study population post of follow up | Delayed<br>operative |
| Table 6: | Clinical findings (Time of VP shunt related to age of patient and as percentage of shunt infection)                        | ssociated            |

# List of Figures

| Fig. No. | Title                                                                                   | Page No.     |
|----------|-----------------------------------------------------------------------------------------|--------------|
| Fig. 1:  | Coronal posterior view showing brain upper cervical segments and their posterior fossa. | relations in |
| Fig. 2:  | Inferior view showing dissected brains topography.                                      |              |
| Fig. 3:  | Sagittal view of dissected brain ster and its connections.                              | <del>-</del> |
| Fig. 4:  | Axial, sagittal, & coronal sections of system.                                          |              |
| Fig. 5:  | Multiple stages of primary neurulation microscope                                       | =            |
| Fig. 6:  | Steps of 2ry neurulation                                                                | 17           |
| Fig. 7:  | Illustration for steps of formation of and neural crest                                 |              |
| Fig. 8:  | The role of morphogenic proteins in do of spinal cord                                   | =            |
| Fig. 9:  | Development of Mesencephalon & Pros                                                     | encephalon23 |
| Fig. 10: | Development of early ventricular system                                                 | m24          |
| Fig. 11: | Different types of neural tube defects                                                  | 26           |
| Fig. 12: | A. typical myelomeningocele with typical myeloschisis with no underlying                |              |
| Fig. 13: | Epidemiological distribution of cases middle east                                       |              |
| Fig. 14: | Ultrasound sagittal view shows a la intermediate in long arrow, tectal beak arrow.      | ing in short |

# List of Figures cont...

| Fig. No. | Title                                                                                                                                   | Page No.                                       |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Fig. 15: | Ultrasound sagittal view of the cord (arrowheads) and myelomening. Note the tethering of the placode a dysraphic defect.                | ngocele (arrows).  It the site of the          |
| Fig. 16: | Sagittal T1 cuts reveling extension level of C4                                                                                         |                                                |
| Fig. 17: | MRI Axial T2 showing culpocephal corpus callosum agenisis, the whi heterotopias.                                                        | te arrows show                                 |
| Fig. 18: | Sagittal T1 MRI show low in tentorium & polygyria                                                                                       |                                                |
| Fig. 19: | Sagittal T1 MRI showing medulla of C3-4.                                                                                                | •                                              |
| Fig. 20: | Axial T2 MRI showing enlarged ma                                                                                                        | assa intermedia49                              |
| Fig. 21: | Sagittal MRI T1 showing large syri                                                                                                      | inx51                                          |
| Fig. 22: | Axial CT 3D reconstruction of inf<br>skull showing the abnormal rotat<br>arrow) related to C2 (short arrow)<br>Chiari II Malfunction    | tion of C1 (long associated with               |
| Fig. 23: | Coronal CT 3D reconstruction of showing post operative decompres magnum, with removal of posterior                                      | sion at foramen                                |
| Fig. 24: | Different steps of MMC closure. A placode from pathological m separation of pial layer and recamplacode C) approximation and clofascia. | nembranes, B) nalization of the sure by lumbar |
| Fig. 25: | Huge defect closed primarily (A) (B)                                                                                                    |                                                |

# List of Figures cont...

| Fig. No. | Title                                                                                                           | Page No.        |
|----------|-----------------------------------------------------------------------------------------------------------------|-----------------|
| Fig. 26: | The proposed positioning for shunting and MMC repair.                                                           |                 |
| Fig. 27: | Methodology of Systematic review                                                                                | 72              |
| Fig. 28: | Clinical findings (Shunt infection in shunting vs Delayed shunting) population post operative follow up.        | of the study    |
| Fig. 29: | Clinical findings (Shunt Revision in vs Delayed Shunting) of the study properative follow up                    | oopulation post |
| Fig. 30: | Clinical findings (Wound infection<br>in Simultaneous shunting vs Delaye<br>the study population post operative | ed shunting) of |
| Fig. 31: | Clinical findings (Time of VP sl<br>related to age of patient and associa<br>of shunt infection)                | ted percentage  |

# List of Abbreviations

| Abb. | Full term                        |
|------|----------------------------------|
| AFP  | Alfa feto protein                |
|      | Bone morphogenic protien         |
|      | Chiari malformation type 2       |
|      | Central Nervous System           |
|      | Cerebrospinal fluid              |
|      | Computed tomography              |
|      | Delayed shunting                 |
|      | Endoscopic Third Ventriculostomy |
| EVD  | External ventricular drain       |
| HCP  | Hydrocephalus                    |
| JLS  | Jarcho–Levin syndrome            |
| LL   | Lower limb                       |
| MGS  | Meckel-Gruber syndrome           |
| MMC  | Myelomeningocele                 |
| MRI  | Magnetic resonance imaging       |
| NIS  | Nationwide inpatient sample      |
| NTD  | Neural Tube Defect               |
| SB   | Spina bifida                     |
| SCM  | Split cord malformation          |
| SD   | Standard deviation               |
| SHH  | Sonic Hedgehog Gene              |
| ST   | Simultaneous shunting            |
| TCUS | Transcranial Ultrasound          |
| UL   | Upper lower                      |
| VPS  | Ventriculo-peritoneal shunt      |

#### Introduction

ost of the features which characterize the hydrocephalus associated to myelomeningocele (MMC) were already pointed out in late 1970s of the last century, for example, its high incidence and its adverse prognostic significance in terms of intellectual development and survival as well as its multifactorial and complex pathophysiology. [74]

It was noticed in fact that only one out of six infants born with MMC presented signs of increased intracranial pressure at birth and that only one out of eight of them had a head circumference (HC) above the 98th percentile.

It was also observed how the hydrocephalus became obvious clinically, eventually in some cases after the spinal defect repair, in a further 65 % of the affected children in early postnatal life with a peak in its recognition at 2–3 weeks of age and how irregular its progression could be subsequently. Consequently, it was emphasized that the HC at birth—in most cases inferior to the 50th percentile—did not have any predictive value for the occurrence of the hydrocephalus as well as for its successive evolution.

Despite the numerous studies aimed at understanding the pathogenesis of the ventricular dilation accompanying MMC, this peculiar type of hydrocephalus remains still relatively obscure. Most of its pathogenetic interpretations appear to have been influenced by the mere consideration of the associated anatomical abnormalities which could impact on the CSF dynamics rather than be based on objective scientific demonstrations. However, the changed attitude of the neurosurgeon who has become reluctant to insert a CSF shunt apparatus in this particular condition because of the related high number of complications. <sup>[6]</sup> In the past time, most researchers suggest that repair of MMC sac in first 24-48 hours decreases risk of infection. The repair after 48 hours of MMC sac causes a significant increase in mortality and morbidity rate.<sup>[75]</sup>

In MMC, however, it is not rare that the hydrocephalus may slow down its progression after a transient phase of increased intracranial pressure and reach a spontaneous arrest in a significant percentage of the cases. On the other hand, those surgeons in favor of the simultaneous approach emphasized the relatively common occurrence of CSF leak from the site of the spinal malformation repair. [76]

There is a general agreement that CSF leak represents a major risk of infection, further advantages were also discussed, namely avoiding a second operation and reducing the duration of the hospitalization.

It is likely that the optimal time for the placement of a CSF shunt device is still far to be established, there are no widely applied criteria for CSF shunting in other patients with MMC with less profound hydrocephalus. Previously reported indicators of the need for a shunt include level of the lesion, clinical signs of



elevated intracranial pressure such as a tense or bulging fontanelle, bradycardia, sunsetting eyes, increasing head circumference, and increasing ventricular size. [77-79]

In a retrospective study, the incidence of infective complications was particular high in newborns receiving the shunt in the first 2 weeks of age. Furthermore the 1-year revision rate was higher in MMC-related HCP than in non- MMC-related HCP, as well as in infants which underwent a delayed shunt insertion after an excessively long period of watchful waiting in the hope to avoid the shunt operation and the related risk to develop shunt dependency, the comparison between both procedures has been addressed in the literature. [79]

#### **Historical Background**

The first mention in literature to what's will be called CM II appeared in 1891. [40] The first published series on unknown syndrome of hindbrain herniations based on autopsy findings by Hans Chiari, Professor of Pathology at the German University of Prague, Chiari then identified four distinct types of these hindbrain herniations including the Type II malformation he found that this type exclusively appears in patients with myelomeningoceles. It was first defined as caudal migration of vermis fourth ventricle & brain stem, later CM II was discovered to affect all the CNS. Two contemporaries of Chiari earlier shared in description of CM II and thus deserve mention. In 1883, Cleland wrote about an infant with myelomeningocele associated

with hind brain abnormalities. [41] Although Eight years before Chiari's contributions his publishes passed unnoticed. Three years after the initial report by Chiari, Arnold then published on a case again with hindbrain herniation & myelomeningocele. [42] Although great effort helped to establish a connection, it is obvious that Chiari's contribution was the greatest. Chiari held detailed study understanding the pathology in order, his classification system remains basically unchanged for more than 100 years, thus deserved his name to be associated with the disease. And so, its preferred to use the term of Chiari type II malformation over Arnold-Chiari malformation. The first "Chiari decompression" occurred in 1932 reported by Ben-Sira, et al. [44]