

بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

NA		T R	ملاحظات:
4 1	6997		
	AIMSWAM	R. CIVILLE HELLA.	
1	5/15/20	1992	

بمكات وتكنولوجبارته

Registry of Patients with Spinal Muscular Atrophy in a Tertiary Care Unit in Egypt

Thesis

Submitted for Partial Fulfillment of Master Degree in Neuropsychiatry Medicine

By
Yosra Elsayed Mekkawy
M.B.B.CH, Ain Shams University

Supervisors

Prof. Nagia Ali Fahmy, MD

Professor of Neurology Faculty of Medicine, Ain Shams University

Prof. Hala Abdulhady Saleh, MD

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine, Ain Shams University

Dr. Hebatallah Reda Rashed, MD

Assistant Professor of Neurology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2022

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Magia Ali Fahmy**, Professor of Neurology, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Wala Abdulhady Saleh**, Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Webatallah Reda Rashed**, Assistant Professor of Neurology, Faculty of Medicine,
Ain Shams University, for her great help, active participation
and guidance.

Yosra Elsayed

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	
Review of Literatuer	
Spinal Muscular Atrophy, An Overview	4
Management of Spinal Muscular Atrophy & Era Genetic Therapy	
Functional Assessment of SMA Patients	43
Patients and Methods	54
Results	
Discussion	
Summary	
Conclusion	82
References	83
Appendices:	
Appendix I: CHOP INTEND SCORE SHEET	95
Appendix II: HFMSE SCORE SHEET	
Arabic Summary	

List of Abbreviations

Abb. Full term
6-MWT 6-minute walk test
AAV Adeno-associated viruse
BICD2 Bicaudal D cargo adaptor
CAG Cytosine, adenine and guanine
CHOP INTEND . The Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders
CK Creatine kinase
DNA Deoxyribonucleic Acid
DSMA Distal spinal muscular atrophy
DYNC1H1 Dynein Cytoplasmic 1 Heavy Chain 1
EAPs Expanded access programs
EMA European Medicines Agency
EMG Electromyography
FVC Forced vital capacity
GMEM Gross Motor Function Measure
HFMS Hammersmith Functional Motor Scale
HFMSE Hammersmith Functional Motor Scale Expanded
HINE Hammersmith Infant Neurological Exam
HMN Hereditary motor neuropathy
IQR Interquartile range
MFM Motor function meaasure
MHFMS Modified Hammersmith Functional Motor Scale
MLPA Multiplex ligation probe amplification
mRNA Messenger ribonucleic acid
NCV Nerve conduction velocity

List of Abbreviations Cont...

Abb. Full term
NIV/IV Non invasive ventilation/ invasive ventilation
NSAA North Star Ambulatory Assessment
PCR Polymerase chain reaction
PEG Percutaneous Endoscopic Gastrostomy
PUL Performance of upper limb
QMT Quantitative Muscle Testing
RHS Revised hammersmith scale
RULM Revised upper limb module
SMA Spinal muscular atrophy
SMA-PCH SMA with pontocerebellar hypoplasia
SMARD SMA with respiratory distress
SMN Survival motor neuron
TREAT-NMD Treat neuromuscular disease
WES Whole exom sequencing
WGS Whole genome sequencing
XL-SMAX-Linked SMA

List of Tables

Table No.	Title	Page No.
Table (1):	Classification and Subtypes of Muscular Atrophy	-
Table (2):	Distribution of the studied cases ac to demographic data	•
Table (3):	The number of cases of each type	59
Table (4):	Percentage consanguinity, similar c family and past history:	
Table (5):	Functional assessment using motor (CHOP INTEND & HFMSE).	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Infant with SMA Type I	
Figure (2):	Ten-month-old girl with SMA Type became symptomatic at about 1.5–2 of age	months
Figure (3):	Child with SMA Type II	11
Figure (4):	Summary of the natural hist pulmonary problems, assessment intervention in spinal muscular atro-	it and
Figure (5):	A chromosome carrying a normal SMN1 and SMN2	
Figure (6):	Diagnostic algorithm for spinal matrophy	
Figure (7):	Spinal muscular atrophy (SMA) testing	
Figure (8):	Multidisciplinary approach	31
Figure (9):	SMA timeline	34
Figure (10):	Possible therapeutic targets, strateg treatments for spinal muscular atrop	
Figure (11):	SMA Cases Treated in Egypt. A tot cases have been treated in Egypt	
Figure (12):	Percentage of Types of SMA	59
Figure (13):	Past medical and surgical history of	case61
Figure (14):	Evaluation of serum level of CK-7 SMA cases.	
Figure (15):	Changes in EMG&NCS in SMA pati	ents63
Figure (16):	Percentage of typical and atypical t SMA among cases	
Figure (17):	No. of copies of SMN2.	65

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (18):	Percentage of skeletal deformities cases.	O
Figure (19):	Cardiac assessment by ECHO in cases.	
Figure (20):	Respiratory assessment by PFTs	69
Figure (21):	Outcome of the disease	70
Figure (22):	Pre and post therapy CHOP IN Scores of 4 children. The curve shateady rise in the motor functions of children.	nows a f these

Introduction

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by degeneration of alpha motor neurons in the spinal cord, resulting in progressive proximal muscle weakness and paralysis. The most common form of SMA (proximal form) is caused by homozygous mutations of the survival motor neuron (SMN1) gene, and the diagnostic test demonstrates in most patients the homozygous deletion of the SMN1 gene, generally showing the absence of SMN1 exon 7. This typical form is classified into four grades of severity (SMA I, SMA II, SMA III, SMA IV) based on age of onset and motor function achieved (*Arnold et al.*, 2014).

The incidence of spinal muscular atrophy is about 1 in 10,000 live births with a carrier frequency of approximately 1 in 50. Male individuals are most frequently affected, especially with the early-onset forms of spinal muscular atrophy (*Verhaart et al.*, 2017).

The clinical classification of proximal form of SMA is dependent upon age of onset and maximal level of motor function achieved. Patients with SMA type I (SMA-I) are infants diagnosed usually by 6 months of age who never achieve independent sitting. Those with SMA type II (SMA-II) present usually between six and eighteen months of age and achieve sitting but never walk independently. Those who

achieve independent ambulation have either SMA type III (SMA-III), presenting usually after eighteen months of age, or SMA type IV (SMA-IV), which presents after age 30 years (Montes et al., 2009).

Other forms of spinal muscular atrophy and related motor neuron diseases, such as spinal muscular atrophy with progressive myoclonic epilepsy, spinal muscular atrophy with lower extremity predominance, X-linked infantile spinal muscular atrophy, and spinal muscular atrophy with respiratory distress type 1 are caused by mutations in other genes (Ikeda et al., 2017).

AIM OF THE WORK

Registry of patients with SMA who are diagnosed clinically and genetically (typical and atypical forms) in a tertiary care unit in Egypt.

Chapter 1

SPINAL MUSCULAR ATROPHY, AN OVERVIEW

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by degeneration of alpha motor neurons in the spinal cord, resulting in progressive proximal muscle weakness and paralysis.

It is the most common genetic cause of infant mortality, and seems to be present in practically all populations.

Spinal muscular atrophy was originally described in 2 infant brothers by Guido Werdnig in 1891 and in 7 additional cases by Johan Hoffmann from 1893 to 1900. Although the eponym Werdnig-Hoffmann disease eventually became affixed to the severe infantile form of SMA, their cases actually were of intermediate severity; the first descriptions of severe infantile SMA were made by Sylvestre in 1899 and Beevor in 1903. A milder form of SMA in which patients retained the ability to stand and walk, with prolonged survival, was not formally described until the 1950s by Wohlfart, Fez, and Eliasson and then in more detail by Kugelberg and Welander (*Kolb et al., 2011*).

All of these descriptions recognized and emphasized the seminal pathology as anterior horn cell degeneration as well as the pertinent clinical features of symmetrical, proximal predominant extremity weakness that also affects axial, intercostal, and bulbar musculature (*Kolb et al.*, 2011).

Epidemiology:

Most of published study results on SMA epidemiology in Europe indicate an SMA incidence of 1:8,400 births (11.9/100,000). In 2011–2015 SMA was diagnosed in 4,653 patients in Europe, with 992 cases in 2015 alone. These results are compatible with the largest study on SMA epidemiology ever initiated, which has been conducted in the USA on a multi-ethnic group of 68,478 people (*Sugarma et al.*, 2012).

This showed an SMA carrier frequency in the population of 1:54 people and an incidence of 1:11,000 births. A significant difference in carrier frequency was noted as depending on race, with the highest in Caucasians (2.02%) and the lowest in African-Americans (0.98%).

In contrast to SMA incidence, its prevalence is difficult to estimate. This is due to the various ages of onset and clinical courses of SMA which influence lifespan, additionally modified by improved standards of care, especially respiratory support.

The global register of patients (the TREAT-NMD Global SMA Patient Registry) provided data from 26 national registries, representing 29 countries and contained a total of 4,526 genetically confirmed patients. This number does not