

بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

NA		T R	ملاحظات:
4 1	6997		
	AIMSWAM	R. MININERRINA.	
1	5/15/20	1992	- 1 3 m. f

بمكات وتكنولوجبارته

Oligoclonal Band versus Chitinase 3 Like 1 Protein in CSF of Newly Diagnosed Relapsing Remitting Multiple Sclerosis

Thesis

Submitted for Partial Fulfillment of Master Degree in **Clinical Pathology**

By

Marehan Ahmed Ibrahim Saad

M.B.B.CH, Faculty of Medicine, Ain Shams University

Under Supervision of

Dr. Yasser Ahmed Zeitoun

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Dr. Nermin Tayseer Aly Fouad

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Dr. Azza Abdel Nasser Abdel Aziz

Professor of Neurology Faculty of Medicine, Ain Shams University

Dr. Dalia Youssef Samaha

Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University
2022

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Yasser Ahmed Zeitoun** Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Mermin Tayseer Aly Found,** Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for his sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Azza Abdel Masser Abdel Aziz**, Professor of Neurology, Faculty
of Medicine, Ain Shams University, for his great help,
outstanding support, active participation and
guidance.

Last but not least my sincere thanks and appreciation to **Dr. Dalia Youssef Samaha**, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University for his meticulous supervision, kind guidance, valuable instructions and generous help.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Marehan Ahmed Ibrahim Saad

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Multiple Sclerosis	5
Chitianse 3 Like 1 Protein	32
Subjects and Methods	47
Results	55
Discussion	67
Summary	74
Conclusion	76
Recommendations	77
References	78
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table I:	Mechanisms of Multiple Sclerosis	7
Table II:	Revised 2017 McDonald criteria diagnosis:	
Table III:	Summary of diseases associated increased CHI3L1 levels	
Table IV:	Summary of the relationship to CHI3L1 and neurodegenerative dis-	
Table 5:	EDSS score for the study group	55
Table 6:	Number of attacks for the study gro	oup55
Table 7:	Affected brain areas for the study g	roup56
Table 8:	CSF oligoclonal bands for the study	group56
Table 9:	Chitinase 3 like 1 protein in CSF study group.	
Table 10:	Association between presence of oligoclonal bands and sociodemo parameters	graphic
Table 11:	Association between CSF CHI31 sociodemographic parameters	
Table 12:	Association between CHI3L1 and score in the studied patients	
Table 13:	Association between OCB and EDS in the studied patients	
Table 14:	Association between OCB and nurattacks in the studied patients	
Table 15:	Association between CHI3L1 and a of attacks in the studied patients	

Tist of Tables cont...

Table No.	Title	Page No.
Table 16:	Association between OCB and nu affected areas in the studied patien	
Table 17:	Association between CHI3L1 and of affected areas in the studied pat	
Table 18:	Association between OCB and CE the CSF of studied patients	
Table 19:	The diagnostic characteristics of in the studied patients	

List of Figures

Fig. No.	Title	Page No.
Figure I:	Effector T Cells in Multiple Sclerosis	14
Figure II:	The pathogenic role of B Cells in sclerosis	
Figure III:	Mechanisms in Progressive Sclerosis	
Figure IV:	The Stages of Multiple Sclerosis	22
Figure V:	Oligoclonal band patterns electrophoresis on polyacrylamide g	•
Figure VI:	The roles of CLPs	34
Figure VII:	General regulatory pathways of expression	
Figure VIII:	The roles of CHI3L1 in the spathways of neurodegenerative dise	0
Figure 9:	Plate	52
Figure 10:	Chitinase 3 like 1 protein in CSF study group.	
Figure 11:	Relation between Chitinase 3 like in CSF and CSF oligoclonal bands	_
Figure 12:	Roc curve of CHI3L1 in the studied	patients 66

Tist of Abbreviations

Abb.	Full term
AD	Al-la cima cur'a discosso
	Alzheimer's disease
	Antigen-presenting cells Area under the curve
Αβ	· ·
	Blood-brain barrier
•	Regulatory B cells
	cluster of differentiation
	Chitinase 3 like protein 1
	Chitinase domain containing 1
	CNS immune-mediated disorders
	Clinically isolated syndrome
	Chitinase like protein
	Central nervous system
	Chronic Obstructive Pulmonary Disease
	Cyclooxygenase-2
	Cerebrospinal fluid
	Chemokine (C-X-C motif) ligand
	EBV nuclear antigen 1
	Epstein- Barr virus
	Expanded Disability Status Scale
ELISA	Enzyme Linked Immunosorbent Assay
FLC	<u> </u>
FoxP3	Forkhead box protein 3
GFAP	Glial fibrillary acidic protein
GM-CSF	Granulocyte-macrophage colony-
	stimulating factor
GWASs	Genome-wide association studies
GzmA	Granzyme A
GzmB	Granzyme B
HLA	human leukocyte antigen

Tist of Abbreviations cont...

Abb.	Full term
IEF	Isoelectric Focusing
IFNγ	
	Immunoglobulin G
_	Immunoglobulin M
IL	
	Interleukin Interleukin-2 receptor alpha gene
	1 1 9
	Interleukin-7 receptor alpha gene International MS Genetics Consortium
	Inducible nitric oxide synthase.
•	Interquartile range
	Mitogen activated protein kinase
	Myelin basic protein
	Monocyte chemoattractant protein-1
	Major histocompatibility complex
miRNA	
	Myelin oligodendrocyte glycoprotein
	Magnetic resonance imaging
MS	-
mtDNA	Mitochondrial DNA
MZ	, -
	Non-alcoholic Steatohepatitis
NEDA	No Evidence of disease activity
Nf-L	Neurofilament light chain
NF-κB	Nuclear factor kappa-light-chain-enhancer
	of activated B cells
NK	Natural killer
NMOSD	Neuromyelitis optica spectrum disorder
NS	Non significant
OCB	Oligoclonal bands
OD	
	Oviductal glycoprotein 1

Tist of Abbreviations cont...

Abb.	Full term
חת	Parkinson's disease
	Programmed death-ligand 1
PMS	
	Primary progressive MS
	Phosphorylated tau
	Receptor for Advanced Glycation End
	-
	Radiologically isolated syndrome
	Reactive nitrogen species
	Receiver Operating Characteristic
	Reactive oxygen species
	Relapsing remitting MS
S	_
	Symptomatic controls
	Standard deviation
	Systemic Lupus Erythematous
_	Spearman's rank correlation coefficient
	Secondary progressive MS
	Statistical package for Social Science
STAT3	signal transducer and activator of
TD 00	transcription 3
Teffs	
•	Transforming growth factor β
Th	-
Th1	-
Th17	-
TNFα	Tumor Necrosis Factor alpha
Treg	· ·
UV	Ultraviolet

Introduction

demyelinating disease of the central nervous system (CNS) that is usually associated with varying degrees of progressive disability. In most patients the early stages of disease, known as relapsing remitting MS (RRMS) are characterized by clinical exacerbations, or relapses, caused by autoreactive immune cells that traffic into the CNS, resulting in focal inflammation and demyelination often visible as gadolinium-enhancing lesions on magnetic resonance imaging (MRI). Relapses are followed by periods of clinical remission as inflammation resolves and remyelination occurs (*Harris et al.*, 2017).

Investigation of cerebrospinal fluid (CSF) in the diagnostic work-up in suspected MS patients has regained attention in the latest version of the diagnostic criteria due to its good diagnostic accuracy and increasing issues with misdiagnosis of MS based on over interpretation of neuroimaging results. The hallmark of MS-specific changes in CSF is the detection of oligoclonal bands (OCB) which occur in the vast majority of MS patients.

The current laboratory methods for detection of CNS immunoglobulin synthesis are immunoglobulin G (IgG)-index and gel isoelectric focusing with visual detection of oligoclonal bands (OCB), of which OCB is considered the gold standard

(Link and Huang, 2006). OCB positivity requires a minimum of two unique IgG bands in CSF, which are not present in Both methods, however, have weaknesses. relevance of IgG index in MS diagnostics has previously been questioned due to low sensitivity, OCB have been reported in other primary and secondary CNS immune-mediated disorders (CIMD) that may clinically mimic MS such as CNS lupus, of **CNS** vasculitis, various forms neurosarcoidosis, antiphospholipid syndrome, CNS infections, CNS lymphoma and neuromyelitis optica spectrum disorder (NMOSD). In addition. OCB is time consuming, expensive, qualitative and due to its visual interpretation, it is prone to inconsistent results (Franciotta and Lolli, 2007).

Therefore, the further search for other biomarkers which are less complicated and less subjective to detect is of great importance in order to improve the diagnosis and therapy of MS (Deisenhammer et al., 2019).

Chitinase 3–like protein 1(CHI3L1), has attracted growing attention as a marker of ongoing inflammation and oncogenic transformation. This secreted glycoprotein, belongs to the 18-glycosyl-hydrolase family of proteins but lacks glycolytic activity. Although its biological functions are not fully understood, it is expressed by many cell types, including macrophages, neutrophils, chondrocytes, endothelial cells, microglia, and astrocytes (Bhardwaj et al., 2015).

In MS brain tissue, CHI3L1 is expressed in astrocytes in white matter plaques and in normal appearing white matter, and it is also expressed in microglia in MS lesions (Hinsinger et al., 2015). In addition, CHI3L1 mediate increased immune cell trafficking the blood brain barrier. CHI3L1 across hypothesized to play a role in chronic inflammation and tissue remodeling (Correale et al., 2011).

AIM OF THE WORK

he aim of this work was to try to assess the diagnostic accuracy of CHI3L1 versus IgG oligoclonal bands (OCBs) in the CSF of newly diagnosed RRMS patients in an attempt to throw light on a new simpler non subjective potential diagnostic marker in MS.