

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Faculty of Education

Dept. of Biological and Geological Sciences

TECTONIC AND SEDIMENTOLOGICAL EVOLUTION OF PORT FOUAD MARINE GAS FIELD, NORTH WEST SINAI, EGYPT

A THESIS SUBMITTED IN PARTIAL FULFILMENT FOR THE PhD DEGREE IN TEACHER PREPARATION IN SCIENCE (GEOLOGY)

BY

Ahmed Essam Eldin Mohamed Galal

(M. Sc. In Geology)

To

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University

Supervised By

Prof. Mohamed Hamed Abd El Aal

Professor of Geophysics Faculty of Education – Ain Shams University

Prof. Abd El-Moneim Ahmed Mahmoud

Professor of Sedimentology
Faculty of Education – Ain Shams University

Prof. Ali Mohamed Ali Abd-Allah

Professor of Structural Geology Faculty of Science – Ain Shams University

Associate Prof. Ahmed Ibrahim Mohamed

Associate Professor of Geology Faculty of Science – Ain Shams University

2020

APPROVAL SHEET

Name: Ahmed Essam Eldin Mohamed Galal

Title: TECTONIC AND SEDIMENTOLOGICAL EVOLUTION OF PORT FOUAD MARINE GAS FIELD, NORTH WEST SINAI, EGYPT

Supervisors

Approved

Prof. Mohamed Hamed Abd El Aal

Professor of Geophysics Faculty of Education Ain Shams University

Prof. Abd El-Moneim Ahmed Mahmoud

Professor of Sedimentology
Faculty of Education
Ain Shams University

Prof. Ali Mohamed Ali Abd-Allah

Professor of Structural Geology Faculty of Science – Ain Shams University

Associate Prof. Ahmed Ibrahim Mohamed

Associate Professor of Geology Faculty of Science – Ain Shams University

CONTENTS

	Title	Page
	Contents	
	List of Figures	i
	List of Tables	Х
	Acknowledgement	xi
	Abstract	xiii
	<u>CHAPTER 1</u> INTRODUCTION AND GEOLOGIC	
	<u>SETTING</u>	
1.1	Introduction	1
1.2	Location of The Study Area	2
1.3	Aim of The Present Work	2
1.4	Available Data	4
1.5	Previous Studies	5
1.6	Geologic Setting	7
1.6.1	Stratigraphy of northwest Sinai and Nile Delta	7
1.6.1.1	Pre-Miocene	10
1.6.1.2	Miocene	10
1.6.1.3	Pliocene	14
1.6.2	Stratigraphy of Port Fouad Marine Field	16
1.6.3	Structure and tectonics of northwest Sinai and Nile Delta	22
1.6.4	Structure of Port Fouad Marine Field	27
	CHAPTER 2 SEQUENCE AND SEISMIC STRATIGRAPHY	
2.1	Introduction	29
2.2	Stratigraphic Sequence Elements	31
2.3	Methodology	32
2.3.1	Seismic facies analysis	33
2.3.1.1	Stratal terminations	34

_____ Contents

	Title	<u>Page</u>
2.3.1.2	Reflection characters	37
2.3.1.3	Reflection internal configurations	37
2.3.1.4	Seismic interval velocity	38
2.3.1.5	Seismic facies units external form	39
2.4	Detected Sequences in The Study Area	39
2.4.1	Seismic stratigraphy and facies analysis	44
2.4.1.1	Serravallian 2 and Serravallian 3 sequences	53
2.4.1.2	Tortonian 1 sequence	53
2.4.1.3	Messinian 1 and Messinian 2 sequences	54
2.4.1.4	Zanclean 1 and Zanclean 2 sequences	54
2.4.1.5	Piacenzian 1 and Piacenzian 2 sequences	55
2.4.1.6	Gelasian 1 and Gelasian 2 sequences	56
2.4.1.7	Calabrian 1 and Calabrian 2 sequences	57
2.4.1.8	Ionian 1 sequence	57
2.4.2	Depth structure and isochore maps	58
	CHAPTER 3	
	SEISMIC VELOCITY AND	
	STRUCTURAL ANALYSIS	
3.1	Introduction	80
3.2	Seismic Data	81
3.3	Seismic Velocity Analysis	82
3.3.1	Relation between time, depth and velocity	83
3.3.2	Average velocity (V _{av})	87
3.3.3	Interval velocity (V _{int})	92
3.3.4	Reflection coefficient (R) analysis	97
3.4	Methodology of Seismic Structural Analysis	102
3.5	Seismic Structural Analysis	104
3.5.1	Bardawil canyon and tectonics	121
	<u>CHAPTER 4</u>	
	WELL LOGGING ANALYSIS	
4.1	Introduction	128
4.2	Well Logging Data	129
4.3	Methodology of Formation Evaluation	130

_____ Contents

	Title	Page
4.3.1	Formation temperature determination	130
4.3.2	Drilling mud parameters correction	131
4.3.3	Formation water resistivity determination	132
4.3.3.1	Laboratory analysis of formation water method	132
4.3.3.2	Water resistivity as a function of salinity and temperature	133
4.3.4	Rock resistivities corrections and measurements	133
4.3.4.1	True formation resistivity	135
4.3.4.2	Resistivity of the flushed-zone	135
4.3.5	Shale evaluation	135
4.3.5.1	Shale volume determination	137
4.3.6	Clay minerals identification	139
4.3.7	Formation porosity determination	140
4.3.7.1	Porosity tools correction	140
4.3.8	Determination of fluid saturation	146
4.3.8.1	Determination of hydrocarbon saturation (S _h)	147
4.3.9	Determination of lithologic components	148
4.3.9.1	The neutron-density crossplot	148
4.3.9.2	Mineral identification (M-N) crossplot	149
4.4	Petrophysical Evaluation of The Studied Wells	151
4.4.1	Lithologic components determination	151
4.4.1.1	The neutron-density crossplots	151
4.4.1.2	The M-N crossplots	155
4.4.2	Shale volume determination (gamma ray method)	155
4.4.3	Determination of total and effective porosities	159
4.4.4	Determination of water and hydrocarbon saturations	160
4.4.4.1	Formation water resistivity (R _W) determination using Gen-6 chart	160
4.5	Reservoir and Pay Cut-Offs and Summation	162

Contents

	Title	Page
4.6	Litho-Stauration Crossplots for The Petrophysical Evaluation Outputs and Hydrocarbon Potentiality	163
	CHAPTER 5 SUMMARY AND CONCLUSIONS	176
	REFERENCES	180
	ARABIC SUMMARY	

LIST OF FIGURES

No.	Title	<u>Page</u>
1.1	Port Fouad Marine Field location map (a), Shot points and wells location map (b)	3
1.2	Stratigraphic model of the Neogene-Quaternary in the Nile Delta, (Schlumberger, 1984).	8
1.3	Generalized stratigraphic column of the off-shore Nile Delta, (EGPC, 1994).	9
1.4	Generalized stratigraphic column of Port Fouad Marine-1 well, (EGPC, 1994).	17
1.5	Fence diagram across PFM-1, PFM-2, PFM-3, PFM-Deep-2R and PFM-SE-1 wells	18
1.6	Geological cross section across PFM-3 and PFM-Deep-2R wells	19
1.7	Geological cross section across PFM-3, PFM-1, PFM-2 and PFM-SE-1 wells	20
1.8	Regional structural setting, North Nile Delta, (Khaled et al., 2014)	23
1.9	Major structural features in the Nile Delta, (EGPC, 1994)	25
1.10	Generalised cross section showing major structural features in the Nile Delta region (EGPC, 1994)	25
1.11	Interpreted seismic structural section in Port Fouad marine area, (EGPC, 1994).	28
1.12	Depth structural contour map on the bottom of the main sand reservoir (Wakar Fm.) in Port Fouad marine gas discovery (EGPC, 1994).	28
2.1	Sea level cycles (Hyne, 1995).	31
2.2	Reflection and stratal terminations types (modified after Veeken 2007)	36

List of Figures

	List of Fi	Suico
No.	Title	Page
2.3	Internal reflection configuration patterns with their interpretations and types of reflection continuity (after Mitchum et al. and Sangree et al., 1977)	38
2.4	External forms of some stratigraphic packages as interpreted from seismic facies units (after Mitchum et al. and Sangree et al., 1977)	40
2.5	Well correlation panel, showing the Miocene-Pleistocene sequences in PFM-SE-1, PFM-2, PFM-3 and PFM-Deep-2R wells	41
2.6	Correlation between the Miocene-Pleistocene sequences in the studied wells (PFM-1, PFM-2, PFM-D2R and PFM-SE-1) wells and Sekhmet-1 and Sekhmet-2 wells (after Boukhary et al., 2015).	43
2.7	Correlation of the sequence stratigraphic schemes for the Miocene-Pleistocene as used in the study area. The columns show the sequence chronostratigraphy of Hardenbol et al. (1998) (1), Haq et al. (1987 and 1988) (2), Wornardt (2001) (3), El-Barkooky and Helal (2002) (4), Hanna (2011) (5) and the present study (6).	45
2.8	Interpreted seismic section of Inline 3647 illustrates the detected sequences, sequence boundaries and lowstand systems tracts using PFM-3 gamma ray log. This section also shows some seismic facies, for location see (Fig. 1.1b)	46
2.9	Interpreted seismic section of Inline 3756 illustrates the detected sequences, sequence boundaries and lowstand systems tracts using PFM-2 gamma ray log. This section also shows some seismic facies, for location see (Fig. 1.1b)	47
2.10	Interpreted seismic section of Inline 3884	48

List of Figures

No.	Title	Page
	illustrates the detected sequences, sequence boundaries and lowstand systems tracts using PFM-D2R gamma ray log. This section also shows some seismic facies, for location see (Fig. 1.1b)	
2.11	Interpreted seismic section of Inline 4321 illustrates the detected sequences, sequence boundaries and lowstand systems tracts using PFM-SE1 gamma ray log. This section also shows some seismic facies, for location see (Fig. 1.1b)	49
2.12	Interpreted seismic section of Crossline 10801 illustrates the detected sequences, sequence boundaries and lowstand systems tracts using PFM-2 gamma ray log. This section also shows some seismic facies, for location see (Fig. 1.1b)	50
2.13	Interpreted seismic section of Crossline 10885 illustrates the detected sequences, sequence boundaries and lowstand systems tracts using PFM-3 gamma ray log. This section also shows some seismic facies, for location see (Fig. 1.1b)	51
2.14	Interpreted seismic section of Crossline 10967 illustrates the detected sequences, sequence boundaries and lowstand systems tracts using PFM-D2R gamma ray log. This section also shows some seismic facies, for location see (Fig. 1.1b)	52
2.15	Structure depth contour map of top Serravallian 3 sequence	59
2.16	Structure depth contour map of top Tortonian 1 sequence	59
2.17	Structure depth contour map of top Messinian 1	60

List of Figures

No.	Title	Page
	sequence	
2.18	Structure depth contour map of top Messinian 2	60
	sequence	60
2.19	Structure depth contour map of top Zanclean 1	61
	sequence	01
2.20	Structure depth contour map of top Zanclean 2	61
2.20	sequence	01
2.21	Structure depth contour map of top Piacenzian 1	62
2.21	sequence	02
2.22	Structure depth contour map of top Piacenzian 2	62
2.22	sequence	02
2.23	Structure depth contour map of top Gelasian 1	63
2.23	sequence	03
2.24	Structure depth contour map of top Gelasian 2	63
	sequence	
2.25	Structure depth contour map of top Calabrian 1	64
	sequence	
2.26	Structure depth contour map of top Calabrian 2	64
	sequence	
2.27	Structure depth contour map of top Ionian 1	65
	sequence	
2.28	Tortonian 1-2 sequence isochore contour map	65
2.29	Tortonian 1-1 sequence isochore contour map	66
2.30	Tortonian 1 sequence isochore contour map	66
2.31	Messinian 1 sequence isochore contour map	67
2.32	Messinian 2 sequence isochore contour map	67
2.33	Zanclean 1 sequence isochore contour map	68
2.34	Zanclean 2 sequence isochore contour map	68
2.35	Piacenzian 1 sequence isochore contour map	69
2.36	Piacenzian 2 sequence isochore contour map	69
2.37	Gelasian 1 sequence isochore contour map	70
2.38	Gelasian 2 sequence isochore contour map	70