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Abstract

he work wen o. he sudy is based on a daase expeced by he minimal supersymmeric
exension of he Sandard model (MSSM) of /s = 14 eV pp collisions a he LHC,
corresponding o an inegraed luminosiy of 139 fb~1.he calculae of he cross secion, limi of
mass and kinmaic disrbuion for he chargino-nuralino pair producion a LHC is presened.
he resuls are compared wih he laes resuls recorded by ALAS and LHC a +/s =
8,13,14 eV in hree-lepon final saes. In he minimal supersymmeric exension of he SM
(MSSM) he mass parameers for he bino, wino, and higgsino saes represened by M;, M,,
and p. Our resuls depend on he naure of he chargino-nuralino pair producion and is
masses. In case of ligh higgsino like slepons he oal cross secion produced a small X,
while for gauginos like s-quarks produced a large x due o he fac ha gaugino consrained
by CMS and ALAS as heavier han 1 eV. Assuming ha he lighes supersymmeric paricle
(LSP) #; is sable wih R-pariy conservaion, i is a well-moivaed o viable dark-maer
candidae. wo scenarios of chargino-nuralino pair producion are considered in his search.
he firs scenario Higgsino like wih wo condiions on he wino-bino and higgsino mass
parameers [(M; < M, < wand(M; < M, < —p)]. he second scenario gaugino like wih
wo condiions on he wino-bino and  higgsino  mass  parameers
[(M; < —p < My)and(—p < My < M,)]. Also, he effec of he sign and value of p on he
oal cross secions for higgsino and gaugino is presened. Resuls are graphed and abulaed.

Also, mass limis are expeced on 7? .



Introduction

heoreical physics like all sciences based. Firs approach. heoreical predicions of . he oher
one sars from an idea formulaed as a heory, and proceeds o make predicions which hen
acs as a es of he heory and of is original idea. Like Supersymmery (SUSY) which sared

as an idea, hen now a idea.
In physics of high energy, we hope of all
. Supersymmeric carriers), and he ineracions beween hem.

unify graviy wih oher ineracions, bu hey fail o describe our real world. So we are hope
Since he graviy is a long range force and no sronger enough a shor disances, so i is an
elusive goal o Unificae of graviy wih oher forces. he exchange of paricles in he srong,
elecromagneic and weak ineracions could describe by a quanum field heory, which a

locally gauge invarian.

he srengh called Planck’s energy. I can be esimaed from his expression

Where h,c,G, are naure consans. A poin paricle wih Plank mass would have a
Schwarzschild radius equal o wice is Compon wavelengh. effec over a vas range ( proon

decay

can describe all hese. his mus happen a energies of 10> GeV, means four orders of
magniude less han Ep;4,cx- Grand. he a goal, even if i could unify hem wih each oher.

One of he moivaions

his hesis (PF¥sS, of magniude EF**). he search uses expeced daase for proon—proon he

CERN Large Hadron Collider mass energy /s =14 eV corresponding o an inegraed



Cheaper (1)

Standard Model

Standard Model of Elecroweak Ineracions

HE Envenion of rnormalizaion hories of elecrweak ineacions is acually on of elemenary

paricle physics. he firs of his he heory of Glashow, Weinberg and Salaam (GWS) known

consrced a mdel for he ak and elecromagneic inercions of lepons whch was bsed on h,
inroduced “ by hand”, ad hoc, he model was unrenormalizable. In 1967- and Salam
consruced he SU(2) x U(1) model of elecroweak ineracions of lepons including a gauge
symmery. In 1971-1972 i was proved using he mecnism prosed by Glshow, llpoulos, and

Mani.

he GWS hory is he fermions (and qurks), a loal SU(2) x SU(1) gage inariance akes he
agin localy gauge invriance) of Higs scalar fieds wih bh gage veor bsons and, is inrouced.

As a of e iae bosons all acire masses.

he free, whih enrs in he of he neral currn in he GWS hey, is sn?8,, ( where 6, is he

agel)

Neurl currns were discoverd a CERN in 1973 i an usng he lage buble chaber “
Gargamelle”. In he prcess $\oerline{\nu }_{\mu }+e\righarrow \ {% \nu } _{\mu }+e$
was obsered. Afer he pineering wok of h “Gargamelle” , a number of were done unique

soluon is in agrmen wih he GWS hory.

In 1980-1981, in currens o he cross secions of he process et +e” -1t +1 (I =

e, U, 7). hese daa also sanard elecoweak model.

he GWS hery preics he vaues of he chaged (W) and neral (Z) inermediae boon msses,

namly, my, ~ 80GeV

a he CERN pp collder, wih exaly he preiced mases, was a draaic confiraion of he

GWStheory.



Gauge Local Invarance

he conce of gaue invaiance [1] gre ou of he obsrvaon ha of a “ chage” (e.g. elecrc chrge
“ ransfomaions ¥ — %%y fo al filds ¥ whih decribe parcles of chage g. deped on he
space-ime cordinaes, i.e. if 8 = cons. hi, 0 a serch for glbally-invaran feld heores capale
of descrbing and classiying all chage ( i.e. makig hm x — depndent ) foces us o inrduce
he elecrmagneic for-veco poenial and,as s quaa, he phons. he reul is quanum
elecdynamics. Requing oher gaue gage poeials whch ge rie o ore exhange parles andhe
ohr hir effes on he dsribuion of he debrs in hgh enegy parcle collsions (jes). o su up,

“ gauing”
is ued excusively for heoies wh locl gaue invarance.
will again be an invariance,

2- “ No ransformaion” is he ideniy elemen,

3- here is exaly

very siilar. here said o difer only in “ colo r”, hence he na=me qunum- by glbal invriance,

and
Renormaliz

Renormalizaoin is in he peru-rbaion - for physical processes. Such expansions are
unforunaely he only calculaions ools currenly availale fo soling he equions of moion of
whch appar can be sed by redefning, in eah ordr of he perubaion expnsion, a fiie nuber of.
Oher procsses can be calclaed unquely o he sme order. In he lows consans and facors
which are mulplied o he wave fucions. Correspndingly, one he srnges moiaions for gaue

heries is heir renormaizabiliy.

A heory is called non- wih negaive mass dimensions (for A =c = 1) lead o non-

renormalizable heories. No maer is herefore non-renormalizable.

Quanum Elecro-dynamics

Quanum Elecrodynamics (QED) is he gauge invarian fild has he sandard fom,[2].



L= _E(Vaaa +m)y

P(x) > P (x) = e*P(x),

where A is an arbirary real Lagrngian (1.1) is no invrian wih respeco he local gauge

ransformaion

P(x) > P (%) = U)p(x)
where
U(x) = exp{id(x)}

and where A(x) is an arbrary d,(x) is indeedo ransormed under (1.3) as he fild (x)

iself. Really, we have
O’ (%) = U () (9 + 0 AP (x)
As is wll known, he Ical gauge inva
Y () (0 — iedq)y
where
A'(x) =A,(x) + %aa/l(x)
From (1.4) i is obvious ha he agrangian, whic folows frm (1.1) by he subiuion
Oqp = (0q — leAg )Y
is now ivarian wh resec o he gauge ransforaion (1.3) and (1.5).

Faﬁ = 6aA,3 - QgAa

— 1
8= -y (0, — iedy) + mly — ZFaﬁFaﬁ

he subsuioe d,y by he covaian deriaive (9, — ieA, )y in he fee Lagrngian of e fieldy

leads he folowing inracion Lagrngian for elecons and poons;

g = iejaAqy
6



where j, = Yy, is he elecroagneic crren. hus he ubsiuion (1.6) fixes uniuely he formof
he ineacion Lagrangin. Such a ieracions called minmal elecromgneic inracion. Leus noe

owever ha hepinciple of gage inariance alone does o fix

ha he Lagrangian (1.9) is he rue Lagrangian which governs he ineracions of elecrons and
phoons. | is also well known ha elecrodynamics, wih he minimal ineracion (1.9), is a

renormalizable heory.
Higgs-Mechanism

he Lagrangian mass erms are inroduced ino he GWS heory via he so called Higgs
mechanism for he sponaneous some classical examples of sponaneous symmery

breakdown in relaivisic field heory.
Consider for insance he complex scalar field ¢(x) wih he Lagrangian densiy[3]
L==0,0"0,9 —V(¢*P)
where
V(g p) = —u¢ ¢ + A(p"¢)?

and where p?and A are posiive consans. he Hamilonian densiy obained from equaion
(1.27) reads:

H=000"0+tV PV +V(d7P)

We now look for he minimum of he energy of he sysem. Obviously, he Hamilonian

(1.29) is minimal a ¢ = cont., a value obained from he condiion

av
%=¢ (—u2 +21¢"¢) =0
®o _leia
V2

where « is an arbirary obviously conneced wih he fac he Lagrangian (1.27) is invarian

wih respec o he global U(1) ransformaions



P(x) > ¢'(x) = e (x)
he energy minimum of he invariance of equaion (1.32) i is always possible o ake

=Y
‘{bo—ﬁ

his is he ypical example of he sponaneouly broken symmery; he Lagrangian of he field
is invarian wih respec o he global U(1) ransformaions, while he value of he field ¢ is
invarian wih respec o he, while he value of he field ¢, corresponding o he minimal

energy, is jus one of many possible choices.

We furher inroduce wo real fields y; and y, as
b =2+ —(n +ixs)
=—+—= [
V2 W2 AT ir

| follows from equaion (1.33) ha he energy of he sysem reaches is minimum value when

he fields y;, x, have vanishing values. Subsiuing (1.34) ino equaion (1.27), and omiing

. Av* . . .
he unimporan consan %, we ge he Lagrangian of he sysem in he following form:

1 1 1 2.,2 3 4 2 2,2 2
£ = =5 0a)10aX1 — 5 0aX20aX2 = 7 A(AVN1 +4vxi + X1+ Avxa Xz + 4xix: T X2)
I now describes he ineracions of wo neural scalar fields. he mass erm of he field y; is

2wyt = my, i

Consequenly, in he case of quanized fields, he mass of he field quanumy; equals

my,, =+2Au= v/2u. here is no erm quadraic in he field y,. his means ha he paricle

of he consans A and u? in he Lagrangian (1.27) are posiive. Consequenly, he quadraic in

he field ¢ appears.

Le us assume ha he his ineracion is inroduced by he subsiuion d,¢ — (9, —igAy)¢ in

equaion (1.27)

he complee Lagrangian of he sysem is



€ = (0 + 194" O~ i9AIP ~V(6"$) 3 FagFug
where
Fop = 0,45 — 0gAq
he Lagrangian (1.37) is invarian wih respec o he local gauge ransformaions

$$\begin{aligned} \phi (x) &\righarrow &\phi *{\as }(x)=e~{i\lambda (x)}\phi, \noag \\
A {l\alpha }(x) &\righarrow &A {\alpha }*{\prime }=A_ {\alpha }(x)+\frac{1}{g}%
\parial _{\alpha Flambda (x),\end{aligned}$$

where A(x) is an arbirary

energy corresponds o a value of he field ¢ equal o (\7—5) e'® (where ambda }}\righ) .$

Due o he gauge invariance of he Lagrangian (1.37) he “ vacuum” value of he field ¢ can

always be aken as

$o =

NS

We shall wrie he field ¢ in he form

() ==+ x@e’ v
¢x—\/§v x(x))e

where y(x) and 8(x) are real funcions of x defined so ha zero values correspond o he

minimum of V.

(w+x()

$(x) = NG

Subsiuing (1.42) of omiing he unimporan consan, we ge he Lagrangian he sysem under

consideraion in he following form

1 1 2 2 1 2.2 1
€= =50ax0a) = 59" W+ ) Aahe = AU + 20)° )" = 7 FapFap

he Lagrangian (1.43) = v2u, respecively.



Before sponaneous symmery breakdown he Lagrangian of he sysem conained a complex
scalar field (wo field).

he mechanism hus discussed is called Higgs mechanism. he scalar paricle, corresponding

0 he quanum of he field y, is called he Higgs paricle.

We have explained he basic principles which are used in consrucing models of
elecroweak o he deailed discussion of he sandard SU(2) x U(1) heory of Glashow,

Weinberg, andSalam.

Chaper (2)

Supersymmery

Moivaion for Supersymmery

Ever since is discovery in he early sevenies, supersymmery has been he focus of
considerable aenion. no experimenal evidence for supersymmery, is remarkable heoreical

properies have provided sufficien moivaion for is sudy.

Supersymmery, is a novel mos general (known) symmery of he S — matrix consisen wih
Poincare’ invariance. ha occur in Quanum Field heory (QF), in paricular, quadraic
parner of he gravion. QF’s exhibi a beer ulraviole behavior, hey may provide a hope of
evenually obaining a consisen quanum heory ha include graviaion. Finally,
supersymmery is an essenial ingredien in he consrucion of he mos recen candidae for a
heory of everyhing,OE, he SUPERSRING.

A his poin, one may ask why all experimens are consisen wih a gauge heory based on
SU@3). xSU(2), xU(1)y, wih he SU(2), x U(1)y being sponaneously broken o

U(Dem-

In he GWS model, he sponaneous breakdown is brough abou he inroducion of an
elemenary scalar field. his discovery of he W+ and Z° bosons a heCERN pp collider, and

he op by many heoriss o be an unpleasan feaure of he sandard model.

10



he problem is he insabiliy of he scalar paricles masses under radiaive correcions. For
example, one-loop radiaive correcions o hese diverge quadraically, leading o correcions

of he form:
om? = 0(a/m)A?

. . 1 .
where A is a cu-off parameer represening he scale of he heory and a = e?/hc ~ =518 he

fine srucure

cally referred o as “ unnaural”, because he parameers have o be uned wih unusual
precision in order o preserve he lighness of he Higgs mass compared o he GU scale
$\Lambda \symbol{126}0(1eV/c"{2})$

One possible soluion o he problem of Jese solve he problem a presen energies, i does no
really represen a Id be difficul o undersand why he gauge principle seems o work so well
a leas up o his poin.

A differen approach wou masses for he W*and Z°, i does no accoun for quark and lepon
masses. his led o he inroducion of he ye anoher ineracion, he exended echnicolor. his

appears o have
(2.1)is
oms = 0(a/m)m¢n(A/m;)

hus, massless fermions do no acquire masses via radiaive correcions. his is a manifesaion
of he chiral symmery he nauralness problem arises because, unlike he case of fermions,
here is no symmery o keep massless scalars from acquiring large masses via radiaive

correcions.

In pracice, a he one-loop level, his works because boson and fermion loops boh ener he
scalar correcion, bu wih a relaive minus sign. For supersymmeric heories, equaion (2.1)

akes he form

dm? = 0(a/m)A?> — 0(a/m)A%2 =0

11



Exac cancellaion requires ha he bosons and fermions ener wih he same quanum numbers
(his is ensured, mainains a relaion beween he couplings bu breaks he mass relaions, and

equaion (2.4) akes he form
sm? ~ 0(a/m)|mj — m}|

We see from expression (1.2) and (1.5) ha for supersymmery o solve he nauralness

problem,
|m3 —mZ| < 0(1TeV /c?)?

where m3 (m]%) is he boson (fermion) o have masses < 0(1TeV /c?) and hope ha hese

may show up a fuure LEP energies.

We emphasize ha no one any paricular mass scale for supersymmeric paricles (sparicles).
| is only if we heories, once his value has been se, eiher “ by hand” or by any oher

mechanism, radiaive correcions preserve his hierarchy of scales.
Rules of Supersymmery
We are here o esablish some of he rules of supersymmery reamen [8].

Firs and foremos we posulae he existence of supersymmery beween fermions and
bosons which should precisely, he ransformaions are o be represened by linear operaors
acing on he vecor space. ( he “representation space”) spanned by he muliple. Finally
he heory will manifes iself in he invariance of his Lagrangian - or raher is inegral over all
ime, he acion- if all he fields undergo heir respecive supersymmery ransformaion.
Because of he lack of experimenal inpu, a large fracion of he research effor of respecing

ineracions.

he heoreical framework in which o consruc supersymmeric models in fla space-ime is
quanum field heory, and i mus be poined ou ha he sandard concep of quanum field heory

allow for relaed evens. As an example, consider he SU(3) gauge heory of gluons, which
can be made -paricles. Such spin % parners of he gluons are called “ gluinos”. If our

models conains no only gluons bu also quarks, we mus also add corresponding parners

for hem. hese have spin 0 and are commonly called “squarks ”. (Procedures like
12



-force dualiy. Afer all, he wave paricle dualiy of quanum mechanics and he subsequen
quesion of he “exchange paricle” in perurbaive quanum field heory seemed o have
abolished: classical fields; fermions are seen as maer because no ow idenical ones can

occupy he same poin in space.

For some ime i was hough ha supersymmery which would naurally relae forces and
fermionic maer would be in conflic wih which would direcly relae o each oher several of
he SU(3) muliples (baryon oce, decuple,ec.) even if hese had differen spins. he failure of
aemps. indeed he only symmery generaors which ransfer a all under boh ranslaions and
roaions are hose of he Lorentz m? and [(l + 1)h? of he mass and spin operaors. his
means ha irreducible muliples of symmery groups can no conain One of he assumpions
made in Coleman and Mandula’s proof did, a real phase angel 6 abou which we alked
earlier. he charge operaors associaed wih such Lie groups of symmery ransformaions
(heir generaors) obey well-defined commutation relations wih each oher. Perhaps he
bes-known example is he se of commuaors L,L, — LyLy = [Ly,Ly,| = ihL,, for he

angular momenum operaors which generae spaial roaions.

Differen spins in he same muliple are allowed if one includes symmery operaions whose
generaors obey anticommutation relations of he form AB + BA = {4,B} = C. his
was firs proposed in 1971 by Gol’fand and Likhman, and followed up by Volkov and

Akulov who arrived a wha we now call a non-linear realizaion of supersymmery. heir

model of operaor which carried a spin > and hus when acing on a sae of spin j resuled in

. .. . ., 1 . 1
a linear combinaion of saes wih spin j + > and j — > Such operaors mus and do observe

anicommuaor relaions wih each oher. hey do no generae Lie groups and are herefore no
rules ou by he Coleman-Mandula no-go heorem. In he ligh of his discovery, Haag,
Lopuszanski, and Sohnius exended he resuls of symmeries can only be relaed o each oher
by fermionic symmery operaors Q of spin %(not %or higher) whose properies are eiher
exacly hose of he Wess-Zumino model or are a leas closely relaed o hem. Only in he

presence of supersymmery can muliples conain paricles of differen spin, such as he

gravion and he phoon.

13



Essenials of Supersymmery Algebra

Supersymmery ransformaions are generaed by quanum operaors Q which change

fermionic saes o0 bosonic ones and vice versa,
Q|fermion) =

supersymmeric model under sudy. here are, however, a number of properies which are

common o he Q's in all supersymmeric models.

By definiion, he Q's change he saisics and hence he spin of he sae. Spin is relaed o
behavior under spaial roaions, and hus supersymmery is- in some since- a space-ime
symmery. Normally, and paricularly so in  models of “exended
supersymmery” (supergraviy is being one example), he Q's also affec he inernal quanum

numbers of he saes. field heories ineresing in he aemps o unify all fundamenal ineracions.

As a simple illusraion of he non-rivial space-ime properies of he Q's, consider he
following. Because fermions and bosons behave differenly under roaions, he Q can no be
invarian under such roaions. We can, for example, apply he uniary operaor U(U~1U = 1)

which, in

and since all fermionic and bosonic saes, aken ogeher, from a basis in he Hilber space,

we easily see ha we must have
UQu—'=—Q

he roaed supersymmery generaor picks up a minus sign, jus as a fermionic sae does. One
. . -1 . .
can exend his, he Q's ransform like ensor operaors of spin > and, in paricular, hey do no

commue wih Lorenz ransformaions followed by a supersymmery ransformaion is

differen from ha when he order of he ransformaion is reserved.

I is no easy o illusrae, bu i

he srucure of a se of symmery operaions is deermined by he resul of wo subsequen

operaions. For coninuous nsead, or vice versa. | can be shown ha he canonical quanizaion

14



