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Abstract 

he work wen o. he sudy is based on a daase expeced by he minimal supersymmeric 

exension of he Sandard model (MSSM) of √𝑠 = 14 eV 𝑝𝑝 collisions a he LHC, 

corresponding o an inegraed luminosiy of 139 fb−1.he calculae of he cross secion, limi of 

mass and kinmaic disrbuion for he chargino-nuralino pair producion a LHC is presened. 

he resuls are compared wih he laes resuls recorded by ALAS and LHC a √𝑠 =

8, 13, 14 eV in hree-lepon final saes. In he minimal supersymmeric exension of he SM 

(MSSM) he mass parameers for he bino, wino, and higgsino saes represened by 𝑀1, 𝑀2, 

and µ. Our resuls depend on he naure of he chargino-nuralino pair producion and is 

masses. In case of ligh higgsino like slepons he oal cross secion produced a small x, 

while for gauginos like s-quarks produced a large x due o he fac ha gaugino consrained 

by CMS and ALAS as heavier han 1 eV. Assuming ha he lighes supersymmeric paricle 

(LSP) 𝜒̃1
0 is sable wih R-pariy conservaion, i is a well-moivaed o viable dark-maer 

candidae. wo scenarios of chargino-nuralino pair producion are considered in his search. 

he firs scenario Higgsino like wih wo condiions on he wino-bino and higgsino mass 

parameers [(𝑀1 < 𝑀2 < µ)𝑎𝑛𝑑(𝑀1 < 𝑀2 < −µ)]. he second scenario gaugino like wih 

wo condiions on he wino-bino and higgsino mass parameers 

[(𝑀1 < −µ < 𝑀2)𝑎𝑛𝑑(−µ < 𝑀1 < 𝑀2)]. Also, he effec of he sign and value of µ on he 

oal cross secions for higgsino and gaugino is presened. Resuls are graphed and abulaed. 

Also, mass limis are expeced on 𝜒̃1
0 . 
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Introduction 

heoreical physics like all sciences based. Firs approach. heoreical predicions of .  he oher 

one  sars from an idea formulaed as a heory, and proceeds o make predicions which hen 

acs as a es of he heory and of is original idea. Like Supersymmery (SUSY) which sared 

as an idea, hen now a idea.  

In physics of high energy, we hope of all  

. Supersymmeric carriers), and he ineracions beween hem.  

unify graviy wih oher ineracions, bu hey fail o describe our real world. So we are hope 

Since he graviy is a long range force and no sronger enough a shor disances, so i is an 

elusive goal o Unificae of graviy wih oher forces. he exchange of paricles in he srong, 

elecromagneic and weak ineracions could describe by a quanum field heory, which a 

locally gauge invarian. 

he srengh called Planck’s energy. I can be esimaed from his expression 

 

Where ℏ, 𝑐, 𝐺, are naure consans. A poin paricle wih Plank mass would have a 

Schwarzschild radius equal o wice is Compon wavelengh. effec over a vas range ( proon 

decay  

can describe all hese. his mus happen a energies of 1015 𝐺𝑒𝑉,  means four orders of 

magniude less han 𝐸𝑃𝑙𝑎𝑛𝑐𝑘. Grand. he a goal, even if i could unify hem wih each oher. 

One of he moivaions  

his hesis (𝑃𝑇
𝑚𝑖𝑠𝑠, of magniude 𝐸𝑇

𝑚𝑖𝑠𝑠).  he search uses expeced daase for proon–proon he 

CERN Large Hadron Collider mass energy √𝑠 =14 eV corresponding o an inegraed  
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Cheaper (1)  

Standard Model 

Standard Model 𝒐𝒇 Elecroweak Ineracions 

HE Envenion of  rnormalizaion hories of elecrweak ineacions is acually on of elemenary 

paricle physics. he firs of his he heory of Glashow, Weinberg and Salaam (𝐆𝐖𝐒) known  

consrced a mdel for he ak and elecromagneic inercions of lepons whch was bsed on h, 

inroduced “ by hand”, ad hoc, he model was unrenormalizable. In 1967- and Salam 

consruced he 𝑆𝑈(2) × 𝑈(1) model of elecroweak ineracions of lepons including a gauge 

symmery. In 1971-1972 i was proved using he mecnism prosed by Glshow, Ilpoulos, and 

Mani. 

he 𝐺𝑊𝑆 hory is he fermions (and qurks), a loal 𝑆𝑈(2) × 𝑆𝑈(1) gage inariance akes he 

agin localy gauge invriance) of Higs scalar fieds wih bh gage veor bsons and, is inrouced. 

As a of e iae bosons all acire masses. 

he  free, whih enrs in he of he neral currn in he 𝐺𝑊𝑆 hey, is sn2𝜃𝑊 ( where 𝜃𝑊 is he 

agel) 

Neurl currns were discoverd a CERN in 1973 i an usng he lage buble chaber “ 

Gargamelle”. In he prcess $\oerline{\nu }_{\mu }+e\righarrow \ {% \nu }_{\mu }+e$ 

was obsered. Afer he pineering wok of h “Gargamelle” , a number of were done unique 

soluon is in agrmen wih he 𝐺𝑊𝑆 hory. 

In 1980-1981, in currens o he cross secions of he process  𝑒+ + 𝑒− → 𝑙+ + 𝑙−(𝑙 =

𝑒, 𝜇, 𝜏). hese daa also sanard elecoweak model. 

he 𝐺𝑊𝑆 hery preics he vaues of he chaged (𝑊) and neral (𝑍) inermediae boon msses, 

namly,  𝑚𝑊 ∼ 80𝐺𝑒𝑉  

a he 𝐶𝐸𝑅𝑁 𝑝𝑝 collder, wih exaly he preiced mases, was a draaic confiraion of he 

𝐺𝑊𝑆𝑡ℎ𝑒𝑜𝑟𝑦. 



5 
 
 

Gauge Local Invarance 

he conce of gaue invaiance [1] gre ou of he obsrvaon ha of a “ chage” (e.g. elecrc chrge 

“ ransfomaions 𝜓 → 𝑒𝑖𝑞𝜃𝜓 fo al filds 𝜓 whih decribe parcles of chage 𝑞. deped on he 

space-ime cordinaes, i.e. if 𝜃 = 𝑐𝑜𝑛𝑠. hi, o a serch for glbally-invaran feld heores capale 

of descrbing and classiying all chage ( i.e. makig hm 𝑥 − 𝑑𝑒𝑝𝑛𝑑𝑒𝑛𝑡 ) foces us o inrduce 

he elecrmagneic for-veco poenial and,as s quaa, he phons. he reul is quanum 

elecdynamics. Requing oher gaue gage poeials whch ge rie o ore exhange parles andhe 

ohr hir effes on he dsribuion of he debrs in hgh enegy parcle collsions (jes). o su up, 

“ gauing”  

 is ued excusively for heoies wh locl gaue invarance. 

 will again be an invariance, 

   2- “ No ransformaion” is he ideniy elemen, 

   3- here is exaly  

very siilar. here said o difer only in “ colo r”, hence he na=me qunum- by glbal invriance, 

and  

Renormaliz 

Renormalizaoin is in he peru-rbaion - for physical processes. Such expansions are 

unforunaely he only calculaions ools currenly availale fo soling he equions of moion of 

whch appar can be sed by redefning, in eah ordr of he perubaion expnsion, a fiie nuber of. 

Oher procsses can be calclaed unquely o he sme order. In he lows consans and facors 

which are mulplied o he wave fucions. Correspndingly, one he srnges moiaions for gaue 

heries is heir renormaizabiliy. 

A heory is called non- wih negaive mass dimensions (for ℏ = 𝑐 = 1) lead o non- 

renormalizable heories. No maer is herefore non-renormalizable. 

Quanum Elecro-dynamics 

Quanum Elecrodynamics (𝑄𝐸𝐷) is he gauge invarian fild has he sandard fom,[2]. 
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𝔏 = −𝜓(𝛾𝛼𝜕𝛼 + 𝑚)𝜓 

𝜓(𝑥) → 𝜓
′
(𝑥) = 𝑒𝑖𝜆𝜓(𝑥), 

where 𝜆 is an arbirary real Lagrngian (1.1) is no invrian wih respeco he local gauge 

ransformaion 

𝜓(𝑥) → 𝜓
′
(𝑥) = 𝑈(𝑥)𝜓(𝑥) 

where 

𝑈(𝑥) = exp{𝑖𝜆(𝑥)} 

and where 𝜆(𝑥) is an arbrary 𝜕𝛼𝜓(𝑥) is indeedo ransormed under (1.3) as he fild 𝜓(𝑥) 

iself. Really, we have 

𝜕𝛼𝜓
′
(𝑥) = 𝑈(𝑥)(𝜕𝛼 + 𝑖𝜕𝛼𝜆(𝑥))𝜓(𝑥) 

As is wll known, he lcal gauge inva 

(𝑥))𝜓′(𝑥)(𝜕𝛼 − 𝑖𝑒𝐴𝛼)𝜓 

where 

𝐴′(𝑥) = 𝐴𝛼(𝑥) +
1

𝑒
𝜕𝛼𝜆(𝑥) 

From (1.4) i is obvious ha he agrangian, whic folows frm (1.1) by he subiuion 

𝜕𝛼𝜓 → (𝜕𝛼 − 𝑖𝑒𝐴𝛼)𝜓 

is now ivarian wh resec o he gauge ransforaion (1.3) and (1.5). 

𝐹𝛼𝛽 = 𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼 

𝔏 = −𝜓[𝛾𝛼(𝜕𝛼 − 𝑖𝑒𝐴𝛼) + 𝑚]𝜓 −
1

4
𝐹𝛼𝛽𝐹𝛼𝛽 

he subsuioe 𝜕𝛼𝜓 by he covaian deriaive (𝜕𝛼 − 𝑖𝑒𝐴𝛼)𝜓 in he fee Lagrngian of e field𝜓 

leads  he folowing inracion Lagrngian for elecons and poons; 

𝔏𝑖 = 𝑖𝑒𝑗𝛼𝐴𝛼 
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where 𝑗𝛼 = 𝜓𝛾𝛼𝜓 is he elecroagneic crren. hus he ubsiuion (1.6) fixes uniuely he formof 

he ineacion Lagrangin. Such a ieracions called minmal elecromgneic inracion. Leus noe 

owever ha hepinciple of gage inariance alone does o fix  

ha he Lagrangian (1.9) is he rue Lagrangian which governs he ineracions of elecrons and 

phoons. I is also well known ha elecrodynamics, wih he minimal ineracion (1.9), is a 

renormalizable heory. 

Higgs-Mechanism 

he Lagrangian mass erms are inroduced ino he 𝐺𝑊𝑆 heory via he so called 𝐻𝑖𝑔𝑔𝑠 

mechanism for he sponaneous some classical examples of sponaneous symmery 

breakdown in relaivisic field heory. 

Consider for insance he complex  scalar field 𝜙(𝑥) wih he Lagrangian densiy[3] 

𝔏 = −𝜕𝛼𝜙∗𝜕𝛼𝜙 − 𝑉(𝜙∗𝜙) 

where 

𝑉(𝜙∗𝜙) = −𝜇2𝜙∗𝜙 + 𝜆(𝜙∗𝜙)2 

and where 𝜇2𝑎𝑛𝑑 𝜆 are posiive consans. he Hamilonian densiy obained from equaion 

(1.27) reads: 

ℌ = 𝜕0𝜙∗𝜙 +▽ 𝜙∗ ▽ 𝜙 + 𝑉(𝜙∗𝜙) 

We now look for he minimum of he energy of he sysem. Obviously, he Hamilonian 

(1.29) is minimal a 𝜙 = 𝑐𝑜𝑛𝑡., a value obained from he condiion 

𝜕𝑉

𝜕𝜙
= 𝜙∗(−𝜇2 + 2𝜆𝜙∗𝜙) = 0 

𝜙0 =
𝜐

√2
𝑒𝑖𝛼 

where 𝛼 is an arbirary obviously conneced wih he fac he Lagrangian (1.27) is invarian 

wih respec o he global 𝑈(1) ransformaions 
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𝜙(𝑥) → 𝜙′(𝑥) = 𝑒𝑖𝜆𝜙(𝑥) 

he energy minimum of he invariance of equaion (1.32) i is always possible o ake 

𝜙0 =
𝜐

√2
 

his is he ypical example of he sponaneouly broken symmery; he Lagrangian of he field 𝜓 

is invarian wih respec o he global 𝑈(1) ransformaions, while he value of he field 𝜙 is 

invarian wih respec o he, while he value of he field 𝜙, corresponding o he minimal 

energy, is jus one of many possible choices. 

We furher inroduce wo real fields 𝜒1 and 𝜒2 as 

𝜙 =
𝜐

√2
+

1

√2
(𝜒1 + 𝑖𝜒2) 

I follows from equaion (1.33) ha he energy of he sysem reaches is minimum value when 

he fields 𝜒1, 𝜒2 have vanishing values. Subsiuing (1.34) ino equaion (1.27), and omiing 

he unimporan consan 
𝜆𝜐4

4
, we ge he Lagrangian of he sysem in he following form: 

𝔏 = −
1

2
𝜕𝛼𝜒1𝜕𝛼𝜒1 −

1

2
𝜕𝛼𝜒2𝜕𝛼𝜒2 −

1

4
𝜆(4𝜐2𝜒1

2 + 4𝜐𝜒1
3 + 𝜒1

4 + 4𝜐𝜒1𝜒2
2 + 4𝜒1

2𝜒2
2 + 𝜒2

2) 

I now describes he ineracions of wo neural scalar fields. he mass erm of he field 𝜒1 is 

2𝜆𝜐2𝜒1
2 = 𝑚𝜒1

2 𝜒1
2 

Consequenly, in he case of quanized fields, he mass of he field quanum𝜒1 equals 

𝑚𝜒1
= √2𝜆𝜇 = √2𝜇. here is no erm quadraic in he field 𝜒2. his means ha he paricle  

of he consans 𝜆 and 𝜇2 in he Lagrangian (1.27) are posiive. Consequenly, he quadraic in 

he field 𝜙 appears.  

Le us assume ha he his ineracion is inroduced by he subsiuion 𝜕𝛼𝜙 → (𝜕𝛼 − 𝑖𝑔𝐴𝛼)𝜙 in 

equaion (1.27) 

he complee Lagrangian of he sysem is 
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𝔏 = (𝜕𝛼 + 𝑖𝑔𝐴𝛼)𝜙∗(𝜕𝛼 − 𝑖𝑔𝐴𝛼)𝜙 − 𝑉(𝜙∗𝜙) −
1

4
𝐹𝛼𝛽𝐹𝛼𝛽 

where 

𝐹𝛼𝛽 = 𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼 

he Lagrangian (1.37) is invarian wih respec o he local gauge ransformaions 

$$\begin{aligned} \phi (x) &\righarrow &\phi ^{\as }(x)=e^{i\lambda (x)}\phi ,  \noag \\ 

A_{\alpha }(x) &\righarrow &A_{\alpha }^{\prime }=A_{\alpha }(x)+\frac{1}{g}% 

\parial _{\alpha }\lambda (x),\end{aligned}$$ 

where 𝜆(𝑥) is an arbirary  

energy corresponds o a value of he field 𝜙 equal o (
𝜐

√2
) 𝑒𝑖𝛼 (where 𝛼mbda }}\righ) .$ 

Due o he gauge invariance of he Lagrangian (1.37) he “ vacuum” value of he field 𝜙 can 

always be aken as 

𝜙0 =
𝜐

√2
 

We shall wrie he field 𝜙 in he form 

𝜙(𝑥) =
1

√2
(𝜐 + 𝜒(𝑥))𝑒𝑖

𝜃(𝑥)
𝜐  

where 𝜒(𝑥) and 𝜃(𝑥) are real funcions of 𝑥 defined so ha zero values correspond o he 

minimum of 𝑉. 

𝜙(𝑥) =
(𝜐 + 𝜒(𝑥))

√2
 

Subsiuing (1.42) of omiing he unimporan consan, we ge he Lagrangian he sysem under 

consideraion in he following form 

𝔏 = −
1

2
𝜕𝛼𝜒𝜕𝛼𝜒 −

1

2
𝑔2(𝜐 + 𝜒)2𝐴𝛼𝐴𝛼 −

1

4
𝜆(𝜒 + 2𝜐)2𝜒2 −

1

4
𝐹𝛼𝛽𝐹𝛼𝛽 

he Lagrangian (1.43) = √2𝜇, respecively. 
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Before sponaneous symmery breakdown he Lagrangian of he sysem conained a complex 

scalar field ( wo field). 

he mechanism hus discussed is called Higgs mechanism. he scalar paricle, corresponding 

o he quanum of he field 𝜒, is called he Higgs paricle. 

We have explained he basic principles which are used in consrucing models of 

elecroweak o he deailed discussion of he sandard 𝑆𝑈(2) × 𝑈(1) heory of  𝐺𝑙𝑎𝑠ℎ𝑜𝑤, 

𝑊𝑒𝑖𝑛𝑏𝑒𝑟𝑔, 𝑎𝑛𝑑𝑆𝑎𝑙𝑎𝑚. 

Chaper (2)  

Supersymmery 

Moivaion 𝒇𝒐𝒓 Supersymmery 

Ever since is discovery in he early sevenies, supersymmery has been he focus of 

considerable aenion. no experimenal evidence for supersymmery, is remarkable heoreical 

properies have provided sufficien moivaion for is sudy. 

Supersymmery, is a novel mos general (known) symmery of he 𝑆 − 𝑚𝑎𝑡𝑟𝑖𝑥 consisen wih 

𝑃𝑜𝑖𝑛𝑐𝑎𝑟𝑒′ invariance. ha occur in Quanum Field heory (QF), in paricular, quadraic 

parner of he gravion. QF’s exhibi a beer ulraviole behavior, hey may provide a hope of 

evenually obaining a consisen quanum heory ha include graviaion. Finally, 

supersymmery is an essenial ingredien in he consrucion of he mos recen candidae for a 

heory of everyhing,OE, he SUPERSRING. 

A his poin, one may ask why all experimens are consisen  wih a gauge heory based on 

𝑆𝑈(3)𝑐 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌, wih he 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 being sponaneously broken o 

𝑈(1)𝑒𝑚. 

In he 𝐺𝑊𝑆 model, he sponaneous breakdown is brough abou he inroducion of an 

elemenary scalar field. his discovery of he 𝑊± and 𝑍0 bosons a he𝐶𝐸𝑅𝑁 𝑝𝑝 collider, and 

he op by many heoriss o be an unpleasan feaure of he sandard model. 
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he problem is he insabiliy of he scalar paricles masses under radiaive correcions. For 

example, one-loop radiaive correcions o hese diverge quadraically, leading o correcions 

of he form: 

𝛿𝑚2 = 𝑂(𝛼/𝜋)𝛬2 

where 𝛬 is a cu-off parameer represening he scale of he heory and 𝛼 = 𝑒2/ℎ𝑐 ≈
1

137
 is he 

fine srucure  

cally referred o as “ unnaural”, because he parameers have o be uned wih unusual 

precision in order o preserve he lighness of he Higgs mass compared o he GU scale 

$\Lambda \symbol{126}O(1eV/c^{2})$ 

One possible soluion o he problem of ]ese solve he problem a presen energies, i does no 

really represen a ld be difficul o undersand why he gauge principle seems o work so well 

a leas up o his poin. 

A differen approach wou masses for he 𝑊±𝑎𝑛𝑑 𝑍0, i does no accoun for quark and lepon 

masses. his led o he inroducion of he ye anoher ineracion, he exended echnicolor. his 

appears o have  

(2.1) is 

𝛿𝑚𝑓 = 𝑂(𝛼/𝜋)𝑚𝑡ln(𝛬/𝑚𝑡) 

hus, massless fermions do no acquire masses via radiaive correcions. his is a manifesaion 

of he chiral symmery he nauralness problem arises because, unlike he case of fermions, 

here is no symmery o keep massless scalars from acquiring large masses via radiaive 

correcions. 

In pracice, a he one-loop level, his works because boson and fermion loops boh ener he 

scalar correcion, bu wih a relaive minus sign. For supersymmeric heories, equaion (2.1) 

akes he form 

𝛿𝑚2 ≈ 𝑂(𝛼/𝜋)𝛬2 − 𝑂(𝛼/𝜋)𝛬2 = 0 
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Exac cancellaion requires ha he bosons and fermions ener wih he same quanum numbers 

(his is ensured, mainains a relaion beween he couplings bu breaks he mass relaions, and 

equaion (2.4) akes he form 

𝛿𝑚2 ≈ 𝑂(𝛼/𝜋)|𝑚𝐵
2 − 𝑚𝑓

2| 

We see from expression (1.2) and (1.5) ha for supersymmery o solve he nauralness 

problem, 

|𝑚𝐵
2 − 𝑚𝑓

2| ≤ 𝑂(1𝑇𝑒𝑉/𝑐2)2 

where 𝑚𝐵
2  (𝑚𝑓

2) is he boson (fermion) o have masses ≤ 𝑂(1𝑇𝑒𝑉/𝑐2) and hope ha hese 

may show up a fuure LEP energies. 

We emphasize ha no one any paricular mass scale for supersymmeric paricles (sparicles). 

I is only if we heories, once his value has been se, eiher “ by hand” or by any oher 

mechanism, radiaive correcions preserve his hierarchy of scales. 

Rules 𝒐𝒇 Supersymmery 

We are here o esablish some of he rules of supersymmery reamen [8]. 

Firs and foremos we posulae he 𝑒𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒 of supersymmery beween fermions and 

bosons which should precisely, he ransformaions are o be represened by linear operaors 

acing on he vecor space. ( he “𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒”) spanned by he muliple. Finally 

he heory will manifes iself in he invariance of his Lagrangian - or raher is inegral over all 

ime, he acion-  if all he fields undergo heir respecive supersymmery ransformaion. 

Because of he lack of experimenal inpu, a large fracion of he research effor of respecing 

ineracions. 

he heoreical framework in which o consruc supersymmeric models in fla space-ime is 

quanum field heory, and i mus be poined ou ha he sandard concep of quanum field heory 

allow for relaed evens. As an example, consider he 𝑆𝑈(3) gauge heory of gluons, which 

can be made -paricles. Such spin 
1

2
 parners of he gluons are called “ gluinos”. If our 

models conains no only gluons bu also quarks, we mus also add corresponding parners 

for hem. hese have spin 0 and are commonly called “squarks ”. (Procedures like  
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-force dualiy. Afer all, he wave paricle dualiy of quanum mechanics and he subsequen 

quesion of he “exchange paricle” in perurbaive quanum field heory seemed o have 

abolished: classical fields; fermions are seen as maer because no ow idenical ones can 

occupy he same poin in space. 

For some ime i was hough ha supersymmery which would naurally relae forces and 

fermionic maer would be in conflic wih which would direcly relae o each oher several of 

he 𝑆𝑈(3) muliples (baryon oce, decuple,ec.) even if hese had differen spins. he failure of 

aemps. indeed he only symmery generaors which ransfer a all under boh ranslaions and 

roaions are hose of he 𝐿𝑜𝑟𝑒𝑛𝑡𝑧 𝑚2 and 𝑙(𝑙 + 1)ℏ2 of he mass and spin operaors. his 

means ha irreducible muliples of symmery groups can no conain One of he assumpions 

made in Coleman and Mandula’s proof did, a real phase angel 𝜃 abou which we alked 

earlier. he charge operaors associaed wih such Lie groups of symmery ransformaions 

(heir generaors) obey well-defined 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 wih each oher. Perhaps he 

bes-known example is he se of commuaors 𝐿𝑥𝐿𝑦 − 𝐿𝑦𝐿𝑥 ≡ [𝐿𝑥, 𝐿𝑦] = 𝑖ℏ𝐿𝑧 , for he 

angular momenum operaors which generae spaial roaions. 

Differen spins in he same muliple are allowed if one includes symmery operaions whose 

generaors obey 𝑎𝑛𝑡𝑖𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 of he form 𝐴𝐵 + 𝐵𝐴 ≡ {𝐴, 𝐵} = 𝐶. his 

was firs proposed in 1971 by Gol’fand and Likhman, and followed up by Volkov and 

Akulov who arrived a wha we now call a non-linear realizaion of supersymmery. heir 

model of operaor which carried a spin 
1

2
, and hus when acing on a sae of spin 𝑗 resuled in 

a linear combinaion of saes wih spin 𝑗 +
1

2
 and 𝑗 −

1

2
. Such operaors mus and do observe 

anicommuaor relaions wih each oher. hey do no generae Lie groups and are herefore no 

rules ou by he Coleman-Mandula no-go heorem. In he ligh of his discovery, Haag, 

Lopuszanski, and Sohnius exended he resuls of symmeries can only be relaed o each oher 

by fermionic symmery operaors 𝑄 of spin 
1

2
(𝑛𝑜𝑡 

3

2
𝑜𝑟 ℎ𝑖𝑔ℎ𝑒𝑟) whose properies are eiher 

exacly hose of he Wess-Zumino model or are a leas closely relaed o hem. Only in he 

presence of supersymmery can muliples conain paricles of differen spin, such as he 

gravion and he phoon. 
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Essenials 𝒐𝒇 Supersymmery Algebra 

Supersymmery ransformaions are generaed by quanum operaors 𝑄 which change 

fermionic saes o bosonic ones and vice versa, 

𝑄|𝑓𝑒𝑟𝑚𝑖𝑜𝑛⟩ = 

supersymmeric model under sudy. here are, however, a number of properies which are 

common o he 𝑄′𝑠 in all supersymmeric models. 

By definiion, he 𝑄′𝑠 change he saisics and hence he spin of he sae. Spin is relaed o 

behavior under spaial roaions, and hus supersymmery is- in some since- a space-ime 

symmery. Normally, and paricularly so in models of “exended 

supersymmery” (supergraviy is being one example), he 𝑄′𝑠 also affec he inernal quanum 

numbers of he saes. field heories ineresing in he aemps o unify all fundamenal ineracions. 

As a simple illusraion of he non-rivial space-ime properies of he 𝑄′𝑠, consider he 

following. Because fermions and bosons behave differenly under roaions, he 𝑄 can no be 

invarian under such roaions. We can, for example, apply he uniary operaor 𝑈(𝑈−1𝑈 = 1) 

which, in  

and since all fermionic and bosonic saes, aken ogeher, from a basis in he Hilber space, 

we easily see ha we 𝑚𝑢𝑠𝑡 have 

𝑈𝑄𝑈−1 = −𝑄 

he roaed supersymmery generaor picks up a minus sign, jus as a fermionic sae does. One 

can exend his, he 𝑄′𝑠 ransform like ensor operaors of spin 
1

2
 and, in paricular, hey do no 

commue wih Lorenz ransformaions followed by a supersymmery ransformaion is 

differen from ha when he order of he ransformaion is reserved. 

I is no easy o illusrae, bu i  

= [𝑄, 𝐏] = 0 

he srucure of a se of symmery operaions is deermined by he resul of wo subsequen 

operaions. For coninuous nsead, or vice versa. I can be shown ha he canonical quanizaion 


