

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Safety and efficacy of image guided thermal ablation of painful metastatic bone tumors

A THESIS SUBMITTED FOR PARTIAL FULFILMENT OF M.D. DEGREE IN RADIOLOGY

Presented by

Asaad Gamal Asaad Sorial

M.B.B.Ch. Ain Shams University M.Sc. Radiology Ain Shams University

Supervised by

Prof. Mohsen Gomaa Hassan Ismail

Professor of Diagnostic & Interventional Radiology Faculty of Medicine (Ain Shams University)

Prof. Gamal Eldine Mohamed Niazy

Professor of Diagnostic & Interventional Radiology Faculty of Medicine (Ain Shams University)

Assist. Prof. Dr. Haytham Mohamed Nasser

Assistant professor of Diagnostic & Interventional Radiology Faculty of Medicine (Ain Shams University)

Dr. Ahmed Said Ibrahim Abd Elmotal

Lecturer of clinical oncology
Faculty of Medicine (Ain Shams University)

Faculty of Medicine Ain Shams University

ACKNOWLEDGEMENT

First, I thank **God** for blessing me more than I deserve and for his uncountable gifts which are abundantly exceeding above all what we ask or think.

I would like to express my deepest appreciation and gratitude to **Prof. Dr. Mohsen Gomaa Hassan Ismail** for his sincere encouragement, constant advice, and gentle dealing with me like a father with his son, it is a real honor for me to work under his supervision.

I would like to express my deepest appreciation and gratitude to **Prof. Dr. Gamal Eldine Mohamed Niazy** 'the pioneer of the bone thermal ablation' for great participation in this study, teaching, guiding, and supporting me, taking decision by his great experience and giving great solution for the challenging cases.

I owe special thanks, gratitude and appreciation to Assist. **Prof. Dr. Haytham Mohamed Nasser** for his close supervision, continuous advice and support which gave me the best guidance during different stages of this work.

I owe special thanks, gratitude and appreciation to Lecturer. Dr. Ahmed Said Ibrahim Abd Elmotal for great multidisciplinary participation in the of this work by selecting, referring, and following up the cases.

I must express by profound gratitude to my family and friends for providing everything. I can't repay them.

INDEX

List of figures	II
List of tables	V
List of abbreviations	VI
Introduction	1
Aim of work	3
Anatomy	4
Pathological considerations of bone metastasis	13
Pain in bone metastasis	22
Image guided management of bone tumors	37
Patients and methods	69
Results	75
Illustrated cases	91
Discussion	119
Summary and conclusion	124
References	126

List of figures		
Figure 1	A diagram of the human skeleton	5
Figure 2	A femur head with a cortex of compact bone and medulla of trabecular bone	7
Figure 3	Bone structure	8
Figure 4	microscopic bone structure	9
Figure 5	Bone cell types and their positions	12
Figure 6	The steps involved in tumor-cell metastasis	14
Figure 7	Schematic showing factors in bone that drive bone cancer pain	24
Figure 8	Overview of cancer pain assessment	25
Figure 9	Visual analogue scale	27
Figure 10	The 3-step analgesic ladder developed by the World Health Organization.	31
Figure 11	Percutaneous bone tumor management therapeutic algorithm	37
Figure 12	Cryoablation of rib lesion	40
Figure 13	Diagram illustrates the interdependency of temperature and radius around a single needle electrode	45
Figure 14	Different shapes of RF electrodes	49
Figure 15	Valley Lab Radionics RF generator.	50
Figure 16	RF 3000 Boston Scientific RF generator.	51
Figure 17	Rita 1500 RF generator	52
Figure 18	Schematic illustrates the interaction between water molecules and microwaves.	55
Figure 19	Approximation of impedance versus temperature during RF ablation.	57
Figure 20	Temperatures recorded during RF and microwave ablation	58

List of figures (cont.)		
Figure 21	Radiofrequency ablation of a large painful posterior rib metastasis	62
Figure 22	RF medical internally cooled VCT-15XXB variable tip needle	63
Figure 23	Ablation zone of the soloist needle	63
Figure 24	Valley-lab Tyco AC1510 needle	64
Figure 25	RITA StarBurst SDE RFA needle	64
Figure 26	Grounding pad placed close to marked skin entry point	65
Figure 27	A power drill may be used to get an access to the lesion.	66
Figure 28	Chart demonstrating the sex ratio of the participating patients in our study	75
Figure 29	Chart demonstrating the ratio of the primary tumors in the participating patients in our study	77
Figure 30	Chart demonstrating the ratio of the bone metastasis sites in the participating patients in our study	77
Figure 31	Chart demonstrating the ratio of the participating patients position during the ablation session.	79
Figure 32	Chart demonstrating the ratio of the ablation types in our study.	79
Figure 33	Chart demonstrating the ratio of the guiding imaging machine in our study	79
Figure 34	Chart demonstrating the ratio of the number of the ablation sessions in our study.	80
Figure 35	Chart demonstrating the ratio of electrode type in our study.	80
Figure 36	Chart demonstrating the ratio of cases that needed bone biopsy needle and the cases that needed cementoplasty	81

List of figures (cont.)		
Figure 37	Chart demonstrating the median of pain score of the cases in their follow up	84
Figure 38	Chart demonstrating the range, median and IQR of pain score of the cases in their follow up	84
Figure 39	Chart demonstrating the morphine equivalent dose administrated by the cases in their follow up	87
Figure 40	Chart demonstrating the range, median and IQR of morphine equivalent dose administrated by the cases in follow up.	87
Figure 41	Chart demonstrating the ratio of complicated and non-complicated cases.	88
Figure 42	Chart demonstrating the ratio of each complication	89
Figure 43	Chart demonstrating the ratio of clinically improved and non-clinically improved cases.	90
Figure 44	Chart demonstrating the ratio clinical improvement.	90
Fig. 45-49	Illustrative case 1	91-94
Fig. 50-52	Illustrative case 2	95-96
Fig. 53-56	Illustrative case 3	98-99
Fig. 57-60	Illustrative case 4	101-103
Fig. 61-62	Illustrative case 5	104-105
Fig. 63-65	Illustrative case 6	106-107
Fig. 66-69	Illustrative case 7	109-111
Fig. 70-71	Illustrative case 8	112-113
Fig. 72-74	Illustrative case 9	114-115
Fig. 75-76	Illustrative case 10	114-115

List of tables		
Table 1	Incidence of bone metastases in post-mortem in different primary tumors	20
Table 2	Demonstrating the age and sex of the patients in our study	75
Table 3	Demonstrating the ratio of primary tumors, metastasis sites and volume of the lesions in our study	76
Table 4	Table demonstrating the ratio of some technical details in our study.	78
Table 5	Table demonstrating the cases that needed bone biopsy needle and the cases that needed cementoplasty	81
Table 6	Table demonstrating follow up pain score of the cases with P-value and significance	83
Table 7	demonstrating morphine equivalent dose administrated by the cases in their follow up with P-value and significance.	86
Table 8	Table demonstrating the complicated and non-complicated cases.	88
Table 9	Table demonstrating the clinically improved and non-improved cases.	89
Table 10	follow up data of illustrative case 1.	94
Table 11	follow up data of illustrative case 2.	97
Table 12	follow up data of illustrative case 3.	100
Table 13	follow up data of illustrative case 4.	103
Table 14	follow up data of illustrative case 5.	105
Table 15	follow up data of illustrative case 6.	108
Table 16	follow up data of illustrative case 7.	111
Table 17 Table 18	follow up data of illustrative case 8.	113 116
Table 19	follow up data of illustrative case 9.	118
Table 19	follow up data of illustrative case 10.	110

List of abbreviations	
ASU	Ain shams university
CA	Cryoablation
CT	Computed tomography
Fig.	Figure
GHz	giga hertz
HCC	Hepatocellular carcinoma
INR	International normalized ratio
IQR	Interquartile range
kHz	Kilo hertz
LA	Laser ablation
MHz	mega hertz
MRgFUS	magnetic resonance-guided focused ultrasound
MRI	Magnetic resonance imaging
MW	Microwave
MWA	Microwave ablation
No.	Number
NRS	Numerical rating scales
NSAIDs	Nonsteroidal anti-inflammatory drugs
OPG	osteoprotegerin
QOL	quality of life
r	radius
RANK	Receptor activator of nuclear factor kappa-B
RANKL	Receptor activator of nuclear factor kappa-B ligand
RF	Radiofrequency
RFA	Radiofrequency ablation
RTOG	Radiation Therapy Oncology Group
SD	Standard deviation
T	Temperature
TACE	trans arterial chemoembolization
TAE	trans arterial embolization
TNF	Tumor necrosis factor
US	Ultrasound
VAS	Visual analogue scales
VDS	Verbal descriptor scales
WHO	World health organization

EOCS INTRODUCTION SOCR

Introduction

Skeletal metastases are the most common malignant bone tumors, occurring in 30% to 70% of all cancer patients. Breast, prostate, and lung cancers are the major sources of bone metastases (Choi and Raghavan 2012).

Skeletal metastases are the most common cause of severe pain among patients with cancer. Bone pain remarkably compromises the patient's quality of life. The pain can be caused by periosteal stretching secondary to tumor growth, release of chemical mediators by tumoral cells, osteolysis, micro- and macrofractures, spinal cord compression, entrapment and nerve root infiltration, and/or compression caused by weakening of bone by tumor growth (Pusceddu et al. 2013).

Current treatment for patients with bone metastases are primarily palliative and include localized therapies (radiation and surgery), systemic therapies (chemotherapy, hormonal therapy, radiopharmaceuticals, and bisphosphonates) and analgesics (opioids and non-steroidal anti-inflammatory drugs) (Callstrom et al. 2006).

Irradiation therapy may be effective for relieving pain. However, about 20–30% of patients with painful metastatic bone tumors do not respond to external irradiation therapy. In addition,

the recurrence rate of pain following external irradiation therapy is reportedly 27%, and additional irradiation is difficult due to dose limits for normal structures (Kojima et al. 2006).

Nonresponsive tumors may instead undergo percutaneous ablation using different techniques, all of which aim to achieve thermal necrosis. These include radiofrequency ablation (RFA), microwave ablation (MWA), cryoablation (CA), laser ablation (LA), and magnetic resonance-guided focused ultrasound (MRgFUS) ablation (Gennaro et al. 2019).

Radiofrequency ablation (RFA) utilizes a high-frequency alternating current that is passed from the needle electrode into the surrounding tissue, resulting in frictional heating and necrosis (Goetz et al. 2004).

Microwave energy radiates into the tissue through an interstitial antenna that functions to couple energy from the generator power source to the tissue. As a result of the radiation energy emitted from the antenna, direct heating occurs in the adjacent tissue volume with subsequent tumor destruction (Pusceddu et al. 2013).

EOCS AIM OF WORK EOCR

Aim of work

The aim of the present study is to evaluate the technical success, effectiveness (regarding pain palliation), and possible complications of thermal ablation (RFA or MWA) in patients with painful bone metastases.

EDCS ANATOMY EDCS