

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Possible Adverse Effects of Longterm Use of Hydroxychloroquine on Corneal Endothelium

Thesis

Submitted for Partial Fulfillment of Master Degree in Ophthalmology

By

Ahmed Mohamed Mahmoud Farahat

M.B, B. Ch, Ain Shams University

Under supervision of

Prof. Dr. Ayman Abdel Moneim Gaafar

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Dr. Mohamed Omar Yousif

Assistant Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Dr. Bassem Fayez Aziz

Lecturer of Ophthalmology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2022

سورة البقرة الآية: ٣٢

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Work	3
Review of Literature	4
Patients and Methods	27
Results	30
Case Presentation	49
Discussion	75
Summary	80
Conclusions and Recommendations	82
References	
Arabic Summary	 -

List of Abbreviations

Abb. Full term
APCs Antigen-presenting cells
BCVA Best corrected visual acuity
CCT Central corneal thickness
CD Cell density
COVID-19 Coronavirus disease 2019
CV Coefficient of variation
HCQ Hydroxychloroquine
IL Interleukin
IOP Intraocular pressure
JIA Juvenile idiopathic arthritis
pDCs Plasmacytoid dendritic cells
RARheumatoid arthritis
SLESystemic lupus erythematosus
TLR Toll- like receptors
TNFTumor necrosis factor

List of Tables

Table No.	Title	Page No.
Table (1): Table (2): Table (3):	Average endothelial cell density related Demographic data of the studied cases Comparison between study and groups regarding demographic data	30 control
Table (4):	Comparison between control and groups regarding BCVA	study
Table (5):	Comparison between the study and the groups regarding results of specular micro	
Table (6):	Comparison between the study as control groups regarding IOP	nd the
Table (7):	Comparison between the study and the groups regarding posterior segment exam	
Table (8):	Comparison between the study as control groups regarding errors of refra	
Table (9):	Correlation between CCT and Cl HEX%, Age, Duration of HCQ intake, IOP, Sphere, Cylinder and A astigmatism in the study group	BCVA, xis of
Table (10):	Correlation between CD and CC HEX%, Age, Duration of HCQ intake, IOP, Sphere, Cylinder and A astigmatism in the study group	T, CV, BCVA, xis of
Table (11):	Correlation between CV and CD, HEX%, age, duration of HCQ intake, IOP, sphere, cylinder and Assignatism in the study group	BCVA, xis of
Table (12):	Correlation between HEX % and CO age, duration of HCQ intake, BCV sphere, cylinder, and axis of astigmathe study group	A, IOP, tism in

List of Figures

Fig. No.	Title P	age No.
Figure (1):	Hydroxychloroquine	4
Figure (2):	Hydroxychloroquine chemical structur	
Figure (2):	Corneaverticillate	
Figure (4):		
9	Bull's eye maculopathy, A: Rt eye B: L	•
Figure (5):	Hydroxychloroquine (HCQ) pot molecular effects	
Figure (6):	Hydroxychloroquine (HCQ) pot cellular effects	ential
Figure (7):	Layers of cornea	
Figure (8):	Corneal epithelial cells regeneration	
Figure (9):	Mechanism of action of endothelial pur	
Figure (3):		_
O	Specular microscope	
Figure (11):	Optics of specular microscopy	
Figure (12):	Example of specular micro photomicrograph	
Figure (13):	Shows healthy, pleomorp	
	polymegathism and corneal guttata	
Figure (14):	Comparison between study and c groups regarding mean age	
Figure (15):	Comparison between study and c groups regarding BCVA	
Figure (16):	Comparison between study and cogroups regarding CCT.	
Figure (17):	Comparison between study and c groups regarding CD	
Figure (18):	Comparison between study and c groups regarding CV	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (19):	Comparison between study and groups regarding HEX%	
Figure (20):	Difference in IOP between stude control groups	v
Figure (21):	Comparison between study and groups regarding posterior s examination.	segment
Figure (22):	Comparison between study and groups regarding errors of refraction	
Figure (23):	Comparison between study and groups regarding axis of astigmatism	
Figure (24):	Correlation between CCT and sphere P value = 0.010 and r = - 0.462	
Figure (25):	Correlation between CD and CV value = 0.007 and r = - 0.480	_
Figure (26):	Correlation between CD and age value = 0.017and r = -0.605	-
Figure (27):	Correlation between CV and CD value = 0.007 and r = - 0.480	
Figure (28):	Correlation between CV and HEX % value = 0.022 and $r = -0.417$	
Figure (29):	Correlation between HEX % and CV value =0.022 and r = -0.417	
Figure (30):	Case (1)	50
Figure (31):	Case (2)	52
Figure (32):	Case (3)	54
Figure (33):	Case (4)	56
Figure (34):	Case (5)	58

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (35):	Case (6)	60
Figure (36):	Case (7)	62
Figure (37):	Case (8)	64
Figure (38):	Control (1)	66
Figure (39):	Control (2)	68
Figure (40):	Control (3)	70
Figure (41):	Control (4)	72
Figure (42):	Control (5)	74

Introduction

The cornea is a transparent, avascular tissue that acts as a structural barrier and protects the eye against infections. Along with the tear film, it provides proper anterior refractive surface for the eye. The cornea contributes to two thirds of the refractive power of the eye (*Del Monte and Kim*, 2011).

The cornea is formed of six layers which are epithelium, Bowman's Layer, stroma, Dua's layer, Descemet's membrane and endothelium. Dua's layer is a well- defined, acellular layer in pre-Descemet's cornea which has gotten a great attention with the development of lamellar keratoplasty surgeries. This layer has a range of thickness from 6.30 to15.83µm (*Dua et al.*, 2013).

The endothelium is a single layer, five µm thick structure. The cells are hexagonal and metabolically active. There is an endothelial pump which regulate water content of the cornea. The lateral membrane contains the highest density of Na+ K+ATPase pump sites. The two most important ion transport systems are the membrane bound Na+ K+ ATPase pump and the intracellular carbonic anhydrase pathway. Activity of both these systems produces the net flux of ions from stroma to aqueous leaving the stroma relatively dehydrated to keep its transparency. Endothelial cell density continues to change throughout life. Human central endothelial cell density decreases at an average of approximately of 0.6%

per year in normal corneas throughout adult life. Endothelial cells compensate for this decline in cell number polymegathism and pleomorphism as they lack the ability of regeneration (Rio-Cristobal and Martin, 2014).

Hydroxychloroquine is an antimalarial drug commonly used in autoimmune rheumatological diseases such as systemic erythematosus lupus and rheumatoid arthritis as immunomodulatory drug. Despite the beneficial effect of hydroxychloroquine in preventing systemic lupus flares and reducing mortality, it has a toxic effect on retina and possibly on corneal endothelium. These effects may be related to the dose and the duration of drug therapy. There is no specific treatment for retinal toxicity other than cessation of treatment. Screening tests for retinal toxicity is important in early detection of toxicity and preventing irreversible vision loss (Ruiz-Irastorza et al., 2010).

Hydroxychloroquine precipitate may in corneal epithelium in a diffuse or whorl-like pattern causing vortex keratopathy or cornea verticillata. These precipitates are usually asymptomatic. This effect is much less with hydroxychloroquine than chloroquine (Yam and Kwok, 2006).

AIM OF THE WORK

Detection of possible adverse effects of long-term hydroxychloroquine use on corneal endothelium in patients of rheumatological diseases who used the drug for at least three years.

REVIEW OF LITERATURE

Hydroxychloroquine (HCQ) is a well-tolerated drug for various rheumatologic and dermatologic conditions. It has been used off-label as a potential therapy for the new corona virus, COVID-19, although data to support its efficacy is not sufficient due to lack of large, controlled trials (figure 1) (Gbinigie and Frie, 2020).

Figure (1): Hydroxychloroquine (Skipper et al., 2020).

Hydroxychloroquine is a less toxic metabolite of chloroquine which is used to treat rheumatic diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA) and Sjogren's syndrome (figure 2) (*Jorge et al.*, 2018).

Figure (2): Hydroxychloroquine chemical structure (*Tehrani et al.*, 2008).

Its main side effects are gastrointestinal upset (vomiting, diarrhea and stomach cramps), skin rash, headache, dizziness, and ocular toxicity. Serious side effects including arrhythmia, bronchospasm, angioedema, and seizures can rarely occur. Hydroxychloroquine can adversely affect the cornea, ciliary body and retina (*Yam and Kwok*, 2006).

This study aims at detection of possible adverse effects of hydroxychloroquine on corneal endothelium in patients received the drug for at least three years. Hydroxychloroquine is most often used for its anti-inflammatory or immunosuppressive effects in rheumatology and dermatology (Marmor and Hu, 2014).

Corneal toxicity presents as intraepithelial deposition of the drug into the cornea, which rarely affect vision. These deposits accumulate in the basal layers of corneal epithelium to form a whorl-like pattern. This side effect is called vortex keratopathy or cornea verticillata (figure 3). Also hydroxychloroquine causes ciliary body dysfunction which disturbs accommodation. (*Yam and Kwok*, 2006).

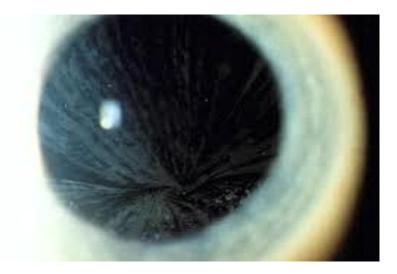


Figure (3): Corneaverticillate (Moiseev et al., 2018).

Symptoms of corneal deposits includes haloes and glare which may occur in some advanced cases. These deposits appear as bilateral fine, golden brown or grey opacities in the inferior cornea that branch out of a central whorl (*Dosso and Rungger*, 2007).

The hallmark of hydroxychloroquine toxicity is bilateral pigmentary retinopathy (*Tehrani et al.*, 2008).