

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

PROPOSED PROTECTION SCHEMES FOR DETECTING AND DIAGNOSIS INCIPIENT BROKEN BARS AND BEARING FAULTS IN INDUCTION MOTORS

By

Mohamed Esam El-dine Atta Abd El-Halim

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Electrical Power and Machines Engineering

PROPOSED PROTECTION SCHEMES FOR DETECTING AND DIAGNOSIS INCIPIENT BROKEN BARS AND BEARING FAULTS IN INDUCTION MOTORS

By

Mohamed Esam El-dine Atta Abd El-Halim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr. Mahmoud Ibrahim Gilany

Electrical Power Engineering Department
Faculty of Engineering,
Cairo University

Prof. Dr. Doaa Khalil Ibrahim

Electrical Power Engineering Department Faculty of Engineering, Cairo University

PROPOSED PROTECTION SCHEMES FOR DETECTING AND DIAGNOSIS INCIPIENT BROKEN BARS AND BEARING FAULTS IN INDUCTION MOTORS

By

Mohamed Esam El-dine Atta Abd El-Halim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Electrical Power and Machines Engineering

Approved by the Examining Committee:

Prof. Dr. Mahmoud Ibrahim Gilany

Prof. Dr. Doaa Khalil Ibrahim

Prof. Dr. Khairy Farahat Ali Helwa

Prof. Dr. Essam Eddin Mohamed Rashad
Faculty of Engineering, Tanta University

Thesis Main Advisor

Advisor

Internal Examiner

External Examiner

Engineer's Name: Mohamed Esam El-dine Atta Abd El-Halim

Date of Birth: 26 / 9 / 1988 Nationality: Egyptian

E-mail: Eng.mesam2010@gmail.com

Phone: +201272011155

Address: Toukh, Al Qalyūbīyah, Egypt

Registration Date: 10 /2017 Awarding Date: / / 202

Degree: Doctor of Philosophy

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Mahmoud Ibrahim Gilany (Thesis Main Advisor)
Prof. Dr. Doaa Khalil Ibrahim (Advisor)

Examiners:

Prof. Dr. Mahmoud Ibrahim Gilany (Thesis Main Advisor)

Prof. Dr. Doaa Khalil Ibrahim (Advisor)
Prof. Dr. Khairy Farahat Ali Helwa (Internal Examiner)
Prof. Dr. Essam Eddin Mohamed Rashad (External Examiner)

Faculty of Engineering, Tanta University

Title of Thesis:

PROPOSED PROTECTION SCHEMES FOR DETECTING AND DIAGNOSIS INCIPIENT BROKEN BARS AND BEARING FAULTS IN INDUCTION MOTORS

Key Words:

Bearing Faults, Broken Bar Faults, Detecting and diagnosis, Induction Motors, Variable load.

Summary:

With the increased dependence on induction motors (IMs) in the modern industry, the detection of incipient motor faults becomes an imperative requirement to reduce maintenance costs and avoid unscheduled shutdowns. Broken bar faults (BBFs) and bearing faults are around 60% of motor faults. These faults are developed from high thermal stresses, excessive forces, environmental stresses and high currents that occur in the motor cage. This thesis proposes three protection schemes to detect and diagnose BBFs and bearing faults.

The first scheme is introduced to detect BBFs and estimate fault severity in IMs under startup conditions. It includes three main stages, applying a powerful optimized S-transform to the current signal, extracting the LSH from the (*t-f*) domain using a proposed adaptive (*t-f*) filter, and estimating a proposed fault severity index based on the energy of RLSH.

The second scheme provides a novel adaptive scheme to detect and diagnosis BBFs in IMs during steady-state conditions. It can detect BBFs in their incipient phases including non-adjacent faults under variable inertia, variable loading conditions, and in a noisy environment. The main idea is to monitor continuously the variation in phase angle of the main sideband frequency components by applying Fast Fourier Transform for only one phase of stator current.

The third scheme is introduced for bearing faults detection and diagnosis under fixed and timevarying speed conditions. It utilizes the persistence spectrum for monitoring bearing health condition, as it provides some features related to bearing health and fault conditions. In addition, a multi-scale structural similarity index is used as a robust basis for bearing faults detection and classification without the need for training process or expert knowledge

The proposed schemes are extensively validated using simulation tests and/or experimental data that proved their effectiveness to detect and diagnose BBFs and bearing faults.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references sections.

Name: Mohamed Esam El-dine Atta Abd El-Halim

Date: --/--/2022

Signature:

ACKNOWLEDGMENT

Before all and after all, I would like to thank "ALLAH" who supported and strengthened me all through my life and in completing my studies for the Doctor of Philosophy Degree.

Then, I would like to thank my supervisors for their contributions to this thesis and for their support in the field of scientific research, and I hope to keep in touch in the future.

Prof. Dr. Mahmoud Ibrahim Gilany, thank you for your guidance, encouragement, and your advice throughout the work. Finally, asking my God Allah, blessing your health.

Prof. Dr. Doaa Khalil Ibrahim, thank you for your guidance, encouragement, and your advice throughout the work. Finally, asking my God Allah, blessing your health.

I want also to express thanks to Prof. Ahmed F. Zobaa (Brunel University London, UK) for supplying me with important advices in my work to diagnose broken bar faults under steady-state operating conditions.

A special and dedicated thank for the spirit of my mother, and continuous support, encouragement from my father and brothers.

Special thanks to my wife for her continuous support. In addition, I do not forget my sons Omar, Abdullah, and Abdulrahmman.

TABLE OF CONTENTS

DISCLAIMER	
ACKNOWLEDGMENT	II
TABLE OF CONTENTS	III
LIST OF TABLES	
LIST OF FIGURES	
LIST OF SYMBOLS AND ABBREVIATIO	
ABSTRACT	XV
CHAPTER (1): INTRODUCTION	1
1.1 Overview	
1.2 Broken Bar Faults	
1.2.1 Causes of broken bar faults	
1.2.2 Challenges of BBFs diagnosis	3
1.3 Bearing Faults and Challenges	4
1.4 Thesis Objectives and Motivations	5
1.5 Thesis Contributions	6
1.6 Thesis Organization	7
CHAPTER (2): BROKEN B	SAR FAULTS
LITERATURE REVIEW	8
2.1 Introduction	8
2.2 Modeling of BBF and Its Effects on IM Variable	s9
2.2.1 Modeling of BBF	9
2.2.2 Signatures of BBF	10
2.3 Model-Based Methods	16
2.3.1 Resistance estimation based methods	17
2.3.2 Other parameters estimation based methods	18
2.3.3 Discussion on model-based methods	18
2.4 Signal Processing–Based Methods	19
2.4.1 Time-domain based methods	19
2.4.2 Frequency-domain based methods	22
2.4.3 Time-frequency domain based methods	27
2.4.4 Discussion on signal processing-based method	ds29

2.5	Data-Driven Based Methods	31
2.6	Conclusion and Ideas for Future Work	31
СН	IAPTER (3): BROKEN BAR FAULTS DETECTION UNI)ER
	DUCTION MOTOR STARTING CONDITIONS	
3.1	Introduction	
3.2	Overview on Stockwell Transform (ST) and Its Modifications	34
3.3	Methodology of the proposed scheme	36
3.	.3.1 The optimized Stockwell Transform	36
3.	.3.2 The proposed adaptive $t - f$ filter	36
3.	.3.3 Proposed fault severity index	38
3.4	The Data Used for Testing the Proposed Scheme	39
3.5	Applying the Proposed Scheme on an IM with BBFs Using Simulated and	Real
	Data	41
3.	.5.1 Verifying the performance of optimized ST for $t - f$ decomposition	41
3.	.5.2 Verifying the performance of the proposed adaptive $t - f$ filter using	
si	mulated data	44
3.6	Extensive Testing and Validation of the Proposed Scheme	46
3.	.6.1 Examining the proposed scheme using simulation based approach	46
3.	.6.2 Examining the proposed scheme using real experimental data	47
3.	.6.3 Determination of the thresholds	48
3.	.6.4 Comparison with other methods	49
3.7	Conclusions	50
CH	IAPTER (4): DETECTING INDUCTION MOT	OR
INC	CIPIENT BROKEN BAR FAULTS AT VARIOUS LOAD A	ND
	ERTIA CONDITIONS	
4.1	Introduction	
4.2	Simulating Broken Bar Faults in IM	
4.3	Methodology of the Proposed Scheme	55
4.4	Analyzing the Variation of Main Sideband Phase Angle under Different	
	Conditions	
	.4.1 Main sideband phase angle variation under healthy conditions	
4.	.4.2 Main sideband phase angle variation under fault conditions	62

4.5.1 Data acquisition stage	65
4.5.2 Data processing stage	65
4.5.3 Adaptive threshold determination and fault detection stage	66
4.5.4 Severity index calculation stage	67
4.6 Testing Results for Proposed Scheme Performance	67
4.6.1 Under different system inertia	68
4.6.2 Under different loading conditions	68
4.6.3 Under different fault severity	69
4.6.4 In a noisy environment	69
4.6.5 Faulty severity determination	69
4.7 Conclusions	72
1	75
1	
5.3 The Density Persistence Histogram	75 ls76
5.3 The Density Persistence Histogram	75 ls76
5.3 The Density Persistence Histogram 5.3.1 Construction of density persistence histogram. 5.3.2 Illustrative examples of persistence spectrum using vibration signal 5.4 Multi-Scale Structural Similarity. 5.4.1 The single-scale structural similarity index (SSIM).	75 ls7679
5.3 The Density Persistence Histogram 5.3.1 Construction of density persistence histogram. 5.3.2 Illustrative examples of persistence spectrum using vibration signal 5.4 Multi-Scale Structural Similarity. 5.4.1 The single-scale structural similarity index (SSIM). 5.4.2 The multi-scale structural similarity index (MS-SSIM).	75 ls767979
5.3 The Density Persistence Histogram 5.3.1 Construction of density persistence histogram	
5.3 The Density Persistence Histogram 5.3.1 Construction of density persistence histogram	
5.3 The Density Persistence Histogram 5.3.1 Construction of density persistence histogram	
5.3 The Density Persistence Histogram 5.3.1 Construction of density persistence histogram	
5.3.1 Construction of density persistence histogram	
5.3 The Density Persistence Histogram	

6.1 Fu	iture Work	89
REFEI	RENCES	90
PUBLI	ISHED WORK	107
الملخص		Í

LIST OF TABLES

Table 2-1: Comparison between different BBF signatures types	16
Table 2-2: Abbreviations used in Tables 2-3, 2-4, 2-5, 2-6, and 2-7	18
Table 2-3: Comparison among different model-based methods	21
Table 2-4: Comparison among different time-domain based fault detect	ion methods 21
Table 2-5: Comparison among different frequency-domain based	fault detection
methods	25
Table 2-6: Comparison among different time-frequency domain based	fault detection
methods	30
Table 2-7: Comparison among different Data-driven based methods	31
Table 3-1: Electrical data of the simulated induction motor [184]	41
Table 3-2: Testing the proposed scheme on 11 kW simulated motor for	different BBFs
at different inertial and loading levels	47
Table 3-3: Different ranges of the proposed index for different healthy/ B	BFs conditions
on 11 kW simulated motor	48
Table 3-4: Mean (μ) and standard deviation (σ) of RLSH energy for 10 at	nd 20 test cases
for each study case	49
Table 3-5: Comparing the proposed scheme versus some previous scheme	nes49
Table 4-1: Electrical data of the two tested motors	54
Table 4-2: Testing proposed scheme on Motor I	71
Table 4-3: Testing proposed scheme on Motor II	71
Table 5-1: The description of the groups used in this chapter for bearing	fault diagnosis
of data provided in [210]	84
Table 5-2: Comparison between the proposed scheme perform	ance and the
performance of other methods in the literature under	r fixed speed
conditions	84
Table 5-3: Comparison between the proposed scheme perform	ance and the
performance of other methods in the literature under	varying speed
conditions	87

LIST OF FIGURES

Figure 1-1: Photo of rotor of 460 kW, 6.6 kV motor with one broken bar (marked with
red color) taken by the author
Figure 1-2: Photo of Rotor of 380 kW, 6.6 kV motor with multiple broken bars (marked
with yellow-colored arrows) taken by the author
Figure 1-3: Classification of false diagnosis sources in the case of BBFs 4
Figure 1-4: Different bearing fault types
Figure 2-1: BBF detection and diagnosis methods classification
Figure 2-2: Effects on LSH and RSH band in the motor current spectrum12
Figure 2-3: Steady-state stator current waveform in case of:
Figure 2-4: Theoretical trajectories produced by the author of LSH and RSH of an
induction motor in time-frequency plane (a) line-fed starting and (b)
Inverter-fed starting with (V/F) control strategy13
Figure 2-5: Magnetic flux distribution during starting of 11 kW IM using FEM
simulation (a) Healthy and (b) with one BBF15
Figure 2-6: General scheme of model-based fault methods [84]
Figure 3-1: The Instantaneous frequency of the generated LSH at starting period37
Figure 3-2: Motor speed and 50 Hz power component of the current signal with/without
window delay compensation during starting of 11 kW motor with two
BRBs at full load conditions
Figure 3-3: Flowchart of the proposed scheme
Figure 3-4: Modeling the starting of the induction motor in [184] with one BRB40
Figure 3-5: The $t-f$ representations of the current signal for the 11 kW simulated
motor with one BBF at no load using different Transforms
Figure 3-6: The $t-f$ representations of real current signal (provided in [182]) of 0.746
kW motor with two BRBs at 12.5% full load using different Transforms
43
Figure 3-7: Application of the proposed adaptive filter in case of starting 11 kW motor
with 2 BRBs at full load with 20 db noise
Figure 3-8: The $t-f$ representation of the current signal for the 11 kW simulated
healthy motor at full load46
Figure 3-9: Boxplot of the proposed scheme performance on real experimental data of
0.746 kW motor for different BBFs at different loading levels48

Figure 4-1: Ch	paracteristics for modeling Motor I with 2 BRBs (a) The magnetic flux
lin	nes distribution, (b) Periodic oscillation in the stator current envelop, (c)
Th	ne main sideband frequency components for stator current (40-60 Hz), (d)
Ph	ase angle of the main sideband components55
Figure 4-2: Ele	ectromagnetic and mechanical phenomena of BBF [68]56
Figure 4-3: Re	action loop of BBF [68]56
Figure 4-4: Th	ne effect of main sideband current components magnitude variation or
the	eir angles variation based on equations. 4-9 and 4-10 (a) The effect of
rig	th sideband component magnitude variation on $\Delta\theta2''$, (b) The effect of
lef	It sideband component magnitude variation on $\Delta \theta 1''$
Figure 4-5: Th	ne impact of inertia changes on i1" and i2" current components phason
dia	agram60
Figure 4-6: M	otor I phase angle of left sideband and right sideband components for
he	althy conditions at inertia of:61
Figure 4-7: M	otor II phase angle of left sideband and right sideband components for
he	althy conditions at:61
Figure 4-8: Th	e impact of load variation (from full loading to partial loading)62
Figure 4-9: M	lotor I phase angle of left sideband, right sideband and fundamental
co	mponents for healthy conditions at:63
Figure 4-10: T	he impact of BBF on i1" and i2" current components phasor diagram63
Figure 4-11:	Motor I vector representation of left sideband and right sideband
co	mponents for:64
Figure 4-12:	Motor II vector representation of left sideband and right sideband
co	mponents for:64
Figure 4-13: S	everity index of Motor I against number of broken bars70
Figure 5-1: Blo	ock diagram of density persistence histogram76
Figure 5-2: Illu	ustrative examples of persistence spectrum of vibration signal provided
in	[210] for motor bearing at fixed speed 1750 rpm under the following
co	nditions: (a) Healthy, (b) Inner racer fault, (c) Ball fault, and (d) Outer
rac	cer fault77
Figure 5-3: Illu	ustrative examples of persistence spectrum of vibration signal of length
1s	that provided in [211] for bearing at variable speed under the different
he	alth conditions

Figure 5-4: the <i>MS – SSIM</i> indices for signal 4 and confidence intervals82
Figure 5-5: The variable speed bearing test rig [211]86