

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

RELATION OF SERUM ALUMINUM LEVEL TO UREMIC PRURITUS IN ESRD PATIENTS ON MAINTENANCE HEMODIALYSIS

Thesis

Submitted for partial fulfillment of MD degree in internal Medicine

Presented by

Mahmoud Nady Abd El Aziz Abd El Azim

M.B.B.Ch, M.SC, Faculty of Medicine- Ain Shams University

Supervised by

Prof. Dr. Iman Ibrahim Sarhan

Professor of Internal Medicine and Nephrology Faculty of Medicine. Ain Shams University

Prof. Dr. Tamer Wahid El Said

Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Prof. Dr. Hussein Sayed Hussein

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University\

DR. Ahmed Mohamed Tawfik

Lecturer of Internal Medicine and Nephrology

Internal medicine, Nephrology – Ain Shams University

Faculty of Medicine Ain Shams University 2022

العلاقة بين نسبة الألومنيوم بالدم والحكة في مرضي الفشل الكلوي المعايشين على الاستصفاء الدموي

رسالة

توطئة للحصول على درجة الدكتوراة في امراض الباطنة العامة مقدمة من

الطبيب/محمود نادي عبد العزيز عبد العظيم

بكالوريوس الطب والجراحة؛ ماجيستير الباطنة العامة كلية الطب جامعة عين شمس

تحت إشراف

الاستاذ الدكتور/ إيمان إبراهيم سرحان

استاذ الباطنة العامة والكلي

كلية الطب- جامعة عين شمس

الاستاذ الدكتور/ تامروحيد السعيد

استاذ الباطنة العامة والكلي

كلية الطب- جامعة عين شمس

الأستاذ الدكتور/ حسين سيد حسين

استاذ مساعد الباطنة العامة والكلي

كلية الطب- جامعة عين شمس

اللكتور/ أحمد محمد توفيق

مدرس الباطنة العامة والكلي

كلية الطب- جامعة عين شمس

كلية الطب

جامعة عين شمس

2022

سورة البقرة الآية: ٣٢

First and foremost thanks to ALLAH, the Most Merciful.

I would like to express my deep and sincere gratitude and appreciation to my thesis supervisors, **Prof. Dr. Iman**Ibrahim Sarhan, Professor of Internal Medicine and Nephrology, Ain Shams University, for providing invaluable guidance throughout this thesis. Her vision, sincerity and motivation have deeply inspired me. She has taught me the methodology to carry out this work and to present the research work as clearly as possible. It was a great privilege and honor to work and study under her guidance and supervision. She has generously devoted much of her time and effort for planning and supervision of this study.

I wish to express my great thanks and gratitude to **Prof. Dr. Tamer Wahid El Said,** Professor of Internal Medicine and Nephrology, Ain Shams University, **Prof. Dr. Hussein Sayed Hussein,** Assistant Professor of Internal Medicine and Nephrology, Ain Shams University, and **DR. Ahmed Mohamed Tawfik,** Lecturer of Internal Medicine and Nephrology, Ain Shams University, for their kind supervision, indispensable advice, and great help in this work.

Last and not least, I want to thank all my family for their love, prayers, caring and sacrifice. my colleagues, for their valuable help and support.

Finally, I would present all my appreciations to my patients without them, this work could not have been completed.

CONTENTS

Tit	tle		Page
•	List of Abbrev	viations	I
•	List of Table	••••••	III
•	List of Figures	S	IV
•	Introduction.	••••••	1
•	Aim of the wo	ork	4
•	Review of lite	rature	
	Chapter (1):	End stage renal disease	5
	Chapter (2):	Uremic pruritus	14
	• • •	Aluminum and end stage renal disease	44
•	Patients and I	Methods	62
•	Results	••••••	66
•	Discussion	••••••	77
•	Summary	••••••	86
•	Conclusion	••••••	89
•	Recommenda	tions	91
•	References		92
•	الملخص العربي		

LIST OF ABBREVIATIONS

Abb.	Full term
25(OH)D-1-alpha hydroxylase	25 hydroxyvitamin D-1 alpha hydroxylase
ACEIs	Angiotensin converting enzyme inhibitors
ACR	Urinary albumin-creatinine ratio
Al	Aluminum
ARBs	Angiotensin receptor blockers
ATN	Acute tubular necrosis
CaSR	Calcium-sensing receptor
CKD	Chronic kidney disease
CKD-aP	CKD-associated pruritus
CRP	C - reactive protein
CVD	Cardio-vascular diseases
DM	Diabetes mellitus
DOPPS	Dialysis Outcomes and Practice Patterns Study
eGFR	Estimated glomerular filtration rate
ESA	Erythropoiesis-stimulating agents
ESRD	End stage renal disease
FGF-23	Fibroblast growth factor 23
FSGS	Focal segmental glomerulosclerosis
GLA	Gamma-linolenic acid
GN	Glomerulonephritis
HBV	Hepatitis B virus
HCV	Hepatitis C virus
HD	Hemodialysis
HTN	Systemic hypertension
ISS	Itch severity scale
IV	Intravenous
KDIGO	Kidney Disease Improving Global Outcomes
KDOQI	The National Kidney Foundation–Kidney
	Disease Outcomes Quality Initiative
KDQOL	Kidney Disease Quality of Life
KDQOL-SF	KDQOL -Short Form
NRS	Numeric rating scale
NSAIDs	Non-steroidal anti-inflammatory drug
PCS	Physical component summary
PD	Peritoneal dialysis

£ List of Abbreviations

A 1. 1.	E II 4
Abb.	Full term
PKD	Polycystic kidney disease
PTH	Parathyroid hormone
QoL	Quality of life
RBCs	Red blood cells
rHuEPO	Recombinant human erythropoeitin
RRT	Renal replacement therapy
SCN	Sickle Cell Nephropathy
SGLT-2	Sodium-glucose transporter 2
TSAT	Transferrin saturation
UP	Uremic Pruritus
URR	Urea reduction ratio
UVB	Ultraviolet B
VAS	Visual analogue scale
VRS	Verbal rating scale
WBCs	White blood cells

LIST OF TABLE

Table No	Subjects	Page
Table (1):	Demographic data of the study population:	67
Table (2):	Medical history of the study population:	68
Table (3):	Drug history of both groups:	69
Table (4):	Lab investigations of both groups:	70
Table (5):	5-D itch scale for pruritic patients:	71
Table (6):	Correlation between 5-D itch scale and HD	
	vintage:	71
Table (7):	Relation between 5-D itch scale and medical	
, ,	history:	72
Table (8):	Relation between 5-D itch scale and drug	
,	history:	72
Table (9):	Correlations between 5-D itch scale and lab	
()	investigations:	74
	$\boldsymbol{\mathcal{C}}$	

LIST OF FIGURES

Figure No	Subjects	Page
Figure (1):	Pathophysiology of chronic pruritus	21
Figure (2):	Pie chart showing gender distribution among	
	study population	66
Figure (3):	Shows box plot figure for the distribution of	
	values (median, lower and upper quartile &	
	outliers identified as dots and stars) for	
	aluminum level between both groups of the	
	study	70
Figure (4):	Error Bars figure Showing vitamin B	
	correlation to 5D itch scale in Pruritic group	73
Figure (5):	Scatter plot showing the correlation of serum	
_	calcium to 5D itch scale in pruritic study	
	group	75
Figure (6):	Scatter plot showing correlation between	
	hemoglobin level to 5D itch scale in pruritic	
	study group	75
Figure (7):	Scatter plot showing correlation of Urea post	
	to 5D itch scale in pruritic study group	76

INTRODUCTION

Uremic pruritus (UP) is a common symptom in end stage renal disease (ESRD) patients maintained on regular hemodialysis (HD). The pathogenesis of Uremic pruritus is complex.

Aluminum (Al) is a common metal that is toxic to patients undergoing HD and also is a common human allergen which can cause immune reaction. Despite that severe (Al) toxicity in patients on maintenance HD is now uncommon due to the removal of (Al) from water used for dialysis by reverse osmosis and deionization as well as the of widely available non-aluminum-containing phosphate binders. However, controlling serum (Al) levels remains an important issue for patients on regular HD. The possible sources of aluminum accumulation in patients on regular HD are oral (aluminum-containing phosphate binders and antacids) and injectable medications (calcitriol, vitamins B complex, iron and erythropoietin) that are commonly administered to dialysis patients, and (Al) removal by dialysis is not efficient (Tsai et al., 2018).

Uremic pruritus (UP) is a common and unpleasant symptom in patients with ESRD. It impacts the quality of life and is associated with increased mortality in HD patients (*Aucella and Gesuete*, 2009).

The prevalence of UP ranges from 42% to 90% (*Liu et al.*, 2017).

Despite the high prevalence of UP, its pathogenesis is multi-factorial and poorly understood. The main hypotheses of UP include the loss of normal skin function, inflammation, dysregulation of the endogenous opioidergic system and central/peripheral neural systemic dysfunction. Other factors that have also been implicated in the pathogenesis of UP include xerosis, increased parathyroid hormone level, calcium phosphate-containing precipitates, iron deficiency anaemia, hepatitis virus infection and others (*Chiu et al.*, 2008).

(Al) is a toxic metal in humans, and its cumulative effects have been shown to be particularly detrimental to the health of ESRD patients. (Al) is cleared from the blood exclusively by glomerular filtration. Thus, patients with renal failure accumulate (Al) and are the only routine patient group likely to be at risk of (Al) toxicity. (Al) overload results in accumulation principally in the skeleton and the brain and manifests with osteomalacia (resistant to vitamin D therapy), bone and muscle pain, iron-resistant microcytic anaemia, and neurologic abnormalities including speech disorders, encephalopathy and dementia. The (Al) per se only seems to be an issue if given concurrently with sodium citrate which dramatically increases (Al) uptake, and in dialysis patients this leads to very high plasma levels ~2000 μg/L (~75 μmol/L) which can result in potentially fatal neurological toxicity (Sharma et al., 2015).

The major sources of (Al) in maintenance HD patients are the water used for dialysate solution and Al-containing phosphate binders. Since the 1980s, pretreatment of tap water by reverse osmosis and deionization has significantly reduced the Al concentration in dialysate solution. Also the of widely available non-aluminum-containing use phosphate binders decreased risk of aluminum toxicity. However, controlling serum (Al) levels remains important issue for patients on regular HD. (Al) removal by dialysis is not efficient, and the possible sources of (Al) accumulation in patients on HD are oral (aluminumcontaining phosphate binders and antacids) and injectable medications (calcitriol, vitamins B complex, iron and erythropoietin) that are commonly administered to dialysis patients. The National Kidney Foundation–Kidney Disease guidelines Initiative Outcomes Quality (KDOQI) recommend that the baseline serum (Al) level should be below 20 ng/mL and that (Al) levels and risk for (Al) toxicity should be assessed at least once per year (Jaffe et al., 2005).

Friga et al., (1997) demonstrated a positive correlation between serum (Al) levels and UP in 94 long-term HD patients. However, few studies have investigated the association between serum (Al) levels and UP since Friga's study. In particular, the association between serum Al level and UP is uncertain in maintenance HD patients.

AIM OF THE WORK

To determine the prevalence of serum aluminum level among HD patients.

To assess the relationship between serum aluminum level and uremic pruritus in HD patients.

END STAGE RENAL DISEASE

Chronic kidney disease (CKD) is defined as the presence of kidney damage or an estimated glomerular filtration rate (eGFR) less than 60 ml/min/1.73 m2, persisting for 3 months or more, irrespective of the cause (*Levin et al.*, 2013).

It is a state of progressive loss of kidney function ultimately resulting in the need for renal replacement therapy (RRT) (dialysis or transplantation). Renal damage refers to pathologic abnormalities either suggested by imaging studies or renal biopsy, abnormalities in urinary sediment, or increased urinary albumin excretion rates. The 2012 Kidney Disease Improving Global Outcomes (KDIGO) CKD classification recommends details about the cause of the CKD and classifies into 6 categories based on GFR (G1 to G5 with G3 split into 3a and 3b). It also includes the staging based on three levels of albuminuria (A1, A2, and A3), with each stage of CKD being subcategorized according to the urinary albumin-creatinine ratio (ACR) in (mg/gm) or (mg/mmol) in an early morning "spot" urine sample (Vaidya and Aeddula, 2020).

The 6 categories include:

- G1: GFR 90 ml/min per 1.73 m2 and above
- G2: GFR 60 to 89 ml/min per 1.73 m2
- G3a: GFR 45 to 59 ml/min per 1.73 m2