

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Utility of Lung Ultrasound in Adjustment of the Initial Mechanical Ventilation Settings in Patients with ARDS

Thesis

Submitted for Partial Fulfillment of MD degree in Chest Diseases

By

Menna Allah Magdy Mohamed El-Sayed

Master degree in Chest Diseases

Supervised by

Prof. Dr. Magdy Mohammed Khalil

Professor of Chest Diseases Faculty of Medicine, Ain Shams University

Prof. Dr. Ashraf Abbas Saied ELMaraghy

Assistant Professor of Chest Diseases Faculty of Medicine, Ain Shams University

Prof. Dr. Haytham Samy Diab

Professor of Chest Diseases Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2022

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Magdy Mohammed Khalil,** Professor of Chest Diseases Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Ashraf Abbas Saied ELMaraghy,** Assistant Professor of Chest Diseases Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof. Dr. Haytham**Samy Diab, Professor of Chest Diseases Faculty of
Medicine, Ain Shams University, for his great help,
active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Menna Allah Magdy Mohamed El-Sayed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the Work	3
Review of Literature	
Adult Respiratory Distress Syndrome	4
Mechanical Ventilation in ARDS	19
PEEP titration /recruitment in ARDS	22
Chest Ultrasound	31
Lung US protocols in critical care medicine	36
Ultrasound In ARDS	44
PEEP titration using ultrasound in ARDS	46
Patients and Methods	53
Results	57
Discussion	69
Summary and Conclusion	75
Recommendations	78
References	79
Arabic Summary	

List of Tables

Table No	o. Title	Page No.
Table (1):	Different (ARDS) definitions throughout year	s till7
Table (2):	Recent definitions of ARDS	8
Table (3):	Demographic characteristics of the studied part	tients 57
Table (4):	Comorbidities among the studied patients	58
Table (5):	Etiology of ARDS among the studied patients	60
Table (6):	Classification OF ARDS among the studied pa	atients 61
Table (7):	Comparison between ultrasound patterns before after PEEP titration.	
Table (8):	Comparison between PaO2/FIO2 before and PEEEP titration	
Table (9):	Effect of PPEP titration on PaCO2	63
Table (10):	Relation between oxygenation and lung aerat ultrasound after recruitment	-
Table (11):	Effect of PEEP titration on Compliance	64
	Relation between change in ultrasound patte lung compliance	rn and
Table (13):	Effect of PEEP titration on ventilatory pressur	es65
Table (14):	Effect of PEEP titration on hemodynamics	66
Table (15):	Relation between successful weaning and chaultrasound pattern.	•
Table (16):	Weaning outcome among studied patients	67
	Mortality among studied patients.	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Different ultrasound pattern	17
Figure (2):	High recruitability and recrubitability	low
Figure (3):	A "timetable" for the acute management hypoxemia in ARDS patients	
Figure (4):	Linear array transducer	33
Figure (5):	Examination of the posterior chest verification pleural space in a supine patient in l	
	decubitus position	35
Figure (6):	Blue protocol	37
Figure (7):	Transversal view of consolidated lobe	
Figure (8):	Comorbidities among the st	
Figure (9):	Severity of ARDS among the st patients	tudied
Figure (10):	Driving pressure before and after recruitment.	_
Figure (11):	illusterative case of severe sonografic guided PEEP titration	

List of Abbreviations

Abb.	Full term
ARDS	Acute respiratory distress syndrome
	Intensive care unit
	Transfusion-associated acute lung injury
	Positive end-expiratory pressure
	Lung ultrasonography
	Acute lung injury
	American European Consensus Conference
	Arterial oxygen partial pressure
	Inspired fraction of oxygen
	Pulmonary artery occlusion pressure
	Positive end expiratory pressure
	Saturation of peripheral oxygen
-	Diffuse alveolar damage
	Danger-associated molecular patterns
e.g	
	Broncho-alveolar lavage
	Granulocyte colony-stimulating factor
	Ventilator-associated pneumonia
	Tumor necrosis factor
VALI	Ventilator-associated lung injury
	Procollagen peptide III
CT	Computed tomography
<i>NIV</i>	Non-Invasive Ventilation
<i>HFNC</i>	High flow nasal cannula
CO2	Carbon dioxide
<i>PBW</i>	Predicted body weight
PCV	Pressure-controlled ventilation
VILI	Ventilator-associated lung injury
<i>VCV</i>	Volume-controlled ventilation

List of Abbreviations (Cont....)

Abb.	Full term
<i>RR</i>	Respiratory rate
I/E Ratio	Inspiratory/expiratory ratio
<i>RM</i>	Recruitment maneuver
<i>EIT</i>	Electrical impedance tomography
PaCO2	Partial pressure of carbon dioxide

Introduction

A cute respiratory distress syndrome (ARDS) represents 10.4% of intensive care unit (ICU) admissions and 23.4% of all ICU patients requiring mechanical ventilation and is associated with a mortality rate of up to 40% (*Bellani et al.*, 2016).

ARDS underwent serial definitions and finally in 2011 Berlin definition of ARDS was declared after prolonged studies and discussions in which bilateral chest imaging shadows not fully explained by effusions, collapse or nodules within one week of a known clinical insult or new worsening respiratory symptoms resulting in respiratory failure not fully explained by cardiac failure or fluid overload helped by echocardiography. It grades it into mild, moderate and severe (*Ranieri et al.*, 2012; *Fanelli et al.*, 2013).

ARDS represents a stereotypic response to many different inciting insults (pneumonia, non - pulmonary sepsis, aspiration of gastric contents, major trauma, pulmonary contusion, pancreatitis inhalational injury, severe burns, non - cardiogenic shock, drug overdose, multiple transfusions or transfusion - associated acute lung injury (TRALI), pulmonary vasculitis and drowning and others. Its mortality remains between 30 - 50%, despite early aggressive intervention (*Ferguson et al., 2012; Ranieri et al., 2012; Jabbari et al., 2013*).

1

A protective lung ventilation strategy (as low - tidal volume ventilation) remains the cornerstone of therapy in ARDS, reducing morbidity and mortality, and is mainly linked to attenuating ventilator - associated lung injury (Walkey et al., 2017).

However, many patients with ARDS develop refractory hypoxemia; thus, several other therapies need to be offered in escalating fashion, ranging, among others, from positive end expiratory pressure (PEEP) / lung recruitment maneuvers and prone positioning to external oxygenation devices (*Bein et al.*, 2016).

Monitoring aeration in ARDS can be performed in several complexity, ranging according to from physical examination, blood gas analysis, esophageal pressure monitoring, and trans -pulmonary pressure assessment to the stress index and several imaging techniques, such as chest radiography, lung ultrasonography (LUS), chest computed tomography, positron emission tomography, magnetic resonance imaging, and electrical impedance tomography (Pesenti et al., 2016).

Given that many of the a fore mentioned techniques are poorly accurate, seldom available in practice, costly, or expose patients to hazards such as ionizing radiation or the need to transfer patients to the radiology department, considering LUS; its widespread availability, low costs, bedside application, and nonionizing radiation as a basic application, appears as an attractive technique for monitoring aeration in ARDS (Ball et al., 2017).

AIM OF THE WORK

The aim of this study was to assess the value of thoracic ultrasound in adjustment of initial ventilator settings in cases with acute respiratory distress syndrome "ARDS".

Chapter 1

Adult Respiratory Distress Syndrome

Historical review and serial definitions

The clinical entity of acute lung injury (ALI) in its most severe form, ARDS, was originally described by *Ashbaugh et al.* in 1967 and represents a common clinical problem in ICU patients. The most widely adopted current definition of ALI and ARDS is based on the recommendations given by the American European Consensus Conference (AECC) committee (*Silversides and Ferguson, 2013*).

Clearly, ARDS is not a disease with a well-defined pathophysiology. It should be considered as a set of effects (hence the term "syndrome") of incompletely understood pathophysiology (*De Lange*, 2017).

ARDS is characterized by diffuse alveolar damage and is frequently complicated by pulmonary hypertension. The single biggest advance in the management of ARDS has been the institution of lung protective ventilation. However, mortality remains unacceptably high, ranging from the 32% to 41% reported in randomized controlled trials and up to 44% in published observational studies (*Ryan et al.*, 2014; *El-Naggar et al.*, 2016).

ALI and its most severe form ARDS underwent serial definitions. The original clinical pattern described by Ashbaugh and his coworkers in 1967 included severe tachypnea, cyanosis

that was refractory to oxygen supplementation, the loss of lung compliance, and diffuse alveolar infiltrates on a chest radiograph. Despite the fact that this definition of ARDS was nonspecific and was dichotomous, it was used for many decades (*De Lange*, 2017).

In 1988, Murray and colleagues elaborated on this model and added a grading system to the definition. This so-called Murray score introduced the ratio of (PaO_2) and inspired fraction of oxygen (FiO_2) as a measure of severity of ARDS (table 1). If the patient had an average Murray score exceeding 2.5 points, the ARDS was considered severe (*De Lange*, 2017).

In 1992, the (AECC) came up with a distinction between ALI and ARDS (table 2) depending on the severity of the PaO₂/FiO₂ ratio. An important improvement was the exception of cardiogenic edema as a cause of respiratory failure. By definition, the patient needed to have a pulmonary artery occlusion pressure (PAOP) of less than 18 mmHg; otherwise, it is considered congestive pulmonary edema. The severity of the ALI/ARDS was correlated with mortality outcome. Mortality of severe ARDS (PaO₂/FiO₂ ratio < 100 mmHg) exceeded 50% in some studies, although the ARDS-associated mortality declined throughout the years (*Silversides and Ferguson*, 2013; de Lange, 2017).

In 2011 Berlin definition of ARDS was declared (table2) after prolonged studies and discussions in which bilateral chest imaging shadows not fully explained by effusions, collapse or

nodules within one week of a known clinical insult or new worsening respiratory symptoms resulting in respiratory failure not fully explained by cardiac failure or fluid overload helped by echocardiography (*Silversides and Ferguson*, 2013).

It grades it into mild $(200 < PaO_2/FiO_2 < 300 \text{ with positive end expiratory pressure (PEEP)>5 cmH2O), moderate <math>(100 < PaO_2/FiO_2 < 200 \text{ with PEEP} > 5 \text{ cmH2O)}$ and severe $(PaO_2/FiO_2 < 100 \text{ with PEEP} > 5 \text{ mH2O})$ (*De Lange*, 2017).

This definition predicts mortality slightly better than the previous AECC one when applied to a cohort of 4400 patients from past randomized trials (*Agmy*, 2015).

The Berlin definition includes prominent issues; ALI now is considered as mild ARDS, the onset of ARDS must be acute within 72 h of recognition of the assumed trigger, bilateral opacities consistent with pulmonary edema must be present on computed tomography or chest radiography and patients with high pulmonary capillary wedge pressures or known congestive heart failure with left atrial hypertension can still have ARDS. An objective assessment by an echocardiogram should be performed if there is no clear risk factor present such as trauma or sepsis (*Agmy*, *2015*).