

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

CURATIVE AND PROTECTIVE ACTIVITIES OF STROBILURIN FUNGICIDES AND THEIR MIXTURES ON POWDERY MILDEW DISEASE IN CUCURBIT CROPS

By

TAMER VICTOR NOSHY LABIB

B. Sc. Agric. (Plant Protection), Fac. Of Agric., Ain Shams Univ. 2006.

A thesis submitted in partial fulfillment

Of

The requirements for the degree of

in
Agricultural Sciences
(Pesticides)

Department of Plant Protection Faculty of Agriculture Ain Shams University

Approval Sheet

CURATIVE AND PROTECTIVE ACTIVITIES OF STROBILURIN FUNGICIDES AND THEIR MIXTURES ON POWDERY MILDEW DISEASE IN CUCURBIT CROPS

By

TAMER VICTOR NOSHY LABIB

B. Sc. Agric. (Plant Protection), Fac. Of Agric., Ain Shams Univ. 2006.

This thesis for master degree has been approved by:

Dr. Mohamed Bassem Mokbel Ashour Prof. Emeritus of Pesticides, Faculty of Agriculture, Zagazig University. Dr. Waala Mohamed Abd El-Ghany Prof. of Pesticides and Vice Dean For Graduate & Research Affairs, Faculty of Agriculture, Ain Shams University. Dr. Sayed Mohamed Abd El-Latif Dahroug Prof. Emeritus of Pesticides, Faculty of Agriculture, Ain Shams University. Dr. Mohamed Ibraheam Abd El-Mageed Prof. Emeritus of Pesticides, Faculty of Agriculture, Ain Shams University.

Date of Examination: 27 / 2 / 2020

CURATIVE AND PROTECTIVE ACTIVITIES OF STROBILURIN FUNGICIDES AND THEIR MIXTURES ON POWDERY MILDEW DISEASE IN CUCURBIT CROPS.

By

TAMER VICTOR NOSHY LABIB

B. Sc. Agric. (Plant Protection), Fac. Of Agric., Ain Shams Univ. 2006.

Under the supervision of:

Dr. Mohamed Ibraheam Abd El-Mageed

Prof. Emeritus of Pesticides, Faculty of Agriculture, Ain Shams University. (Principal Supervisor).

Dr. Sayed Abd El-Latef Dahroug

Prof. Emeritus of Pesticides, Faculty of Agriculture, Ain Shams University.

Dr. Marian Shokry Thabet.

Prof Assistant of Phytopathology, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Tamer Victor Noshy Labib "Curative and Protective Activities of Strobilurin Fungicides and Their Mixtures on Powdery Mildew Disease in Cucurbit Crops." unpublished M.Sc. Thesis, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, 2019.

Squash is a significant crop of cucurbits family. The powdery mildew Podosphaera xanthii (syn. Sphaerotheca fuliginea) causes serious damage on leaves, stems and fruits of plant this reduce the amount of yield every year. Strobilurin group is common fungicides used to control powdery mildew disease. Many studies have indicated for powdery mildew resistance of the strobilurin fungicides group, which indicated the importance of mixing the strobilurin with other chemical compounds such as triazols to face the fungus resistance for the effect of strobilurin fungicides group. This study focusses on effectiveness of azoxystrobin as one of important strobilurin active ingredients, three application, ten days interval, alone and in mixture with difenoconazole and tebuconazole. Besides knowing the induction of resistance for plants by using Monopotassium Phosphate (KH₂PO₄) and dipotassium phosphate (K₂HPO₄) as foliar fertilization treatments against powdery mildew on squash and extent the benefits that will accrue to the yield. In addition to evaluate the protective and curative applications effect for these treatments. The results showed that, all of fungicides were applied provided controlling of powdery mildew on squash and achieved increases in yield compared to untreated. Azoxystrobin alone and in mixture were most effective against powdery mildew on squash compared to difenoconazole, tebuconazole, in both protective and curative applications. However, the protective method was better in activity compared to the curative method. The mixture of azoxystrobin with difenoconazole was superior effectiveness and recorded the highest yield compared to all tested treatments followed by the mixture of azoxystrobin with tebuconazole and both treatments were

slightly better or comparable in activity to azoxystrobin alone. In addition, the foliar application by KH₂PO₄ and K₂HPO₄ showed inferior effect to the induction of resistance for plants to powdery mildew infection under the field conditions.

Key words: Azoxystrobin, strobilurin, powdery mildew, curative, protective, activity, cucurbits, induction of resistance, *Podosphaera xanthii*, KH₂PO₄, effectiveness.

ACKNOWLEDGMENT

"I wish to express my deep thanks to **God** who fulfilled my hopes, offered every possible aid for any one in need to it"

I wish to express my deep thanks to late **Prof. Dr. Mohamed Ibraheam Abd EL-Megeed** Prof. of Pesticides Chemistry, Department of Plant Protection, Faculty of Agriculture, Ain Shams University for suggest to my subject and plan of study for this thesis.

I would like to express my sincere gratitude and deep appreciation to **Prof. Dr. Sayed Abd El-Latef Dahroug.** Prof. of Pesticides and Vice Dean For Graduate & Research Affairs, Faculty of Agriculture, Ain Shams University for facilities he offers, close supervision, reading the manuscript, helpful suggestion, constructive criticism and unfailing help during the whole of this work.

I wish to express my special thanks to **Dr. Marian Shokry Thabet.** Assistant Prof of Plant pathology, Faculty of Agriculture, Ain Shams University, for his helpful guidance during this study, patient guiding and faithful advising and the cooperation through the whole work.

I am also indebted to **Dr. Walaa Mohamed Abd El-Ghany** Prof. of Pesticides, Plant Protection Department, Faculty of Agriculture, Ain Shams University for his encouragement, helpful suggestions and support me in materials and methods.

I am also indebted to **Dr. Emad Samir** Assistant Prof of Pesticides, Plant Protection Department, Faculty of Agriculture, Ain Shams University for his support in preparing and writing the papers of master.

Finally, I am indebted forever to **my family** for their help, support and continuous encouragement.

CONTENTS

		Page
LIST	OF TABLES	III
LIST	OF FIGURES	\mathbf{V}
INTR	ODUCTION	1
REVI	EW OF LITTERATURE	7
1.	Powdery mildew overview	7
1.1.	Pathogenicity and classification	7
1.2.	Effect of powdery mildew on crops	9
1.3.	Evaluation of powdery mildew	10
1.4.	Control methods of powdery mildew	10
1.4.1	Chemical control	10
1.4.2	Biological control.	11
1.4.3	Biological with chemical control.	12
2.	Strobilurin overview	13
2.1.	Strobilurin resistance.	14
2.2.	Diseases controlling by strobilurin	16
3.	Survey the formulated products which used in the markets	19
4.	Effect of strobilurin group fungicides and their mixtures	20
4.1.	Azoxystrobin	20
4.2.	Azoxystrobin and Difenoconazole	22
4.3.	Azoxystrobin and Tebuconazole	26
5.	Determine the period of protection for these pesticides	28
6.	Induction of resistance by using KH ₂ PO ₄ and K ₂ HPO ₄	29
MATI	ERIAL AND METHODS	34
1.	Squash cultivars used	34
2.	Plantation techniques	34
3.	Plot size and replicates number	34
4.	Applications and Type of soil	34
5.	Application equipment	34
6.	Treatments	35

7.	Evaluations	33
RESU	ULT AND DISCUSSION	3'
1.	Effectiveness of strobilurin group fungicides and their	
	mixture	3'
1.1.	Effectiveness of Azoxystrobin alone and in mixtures compared	
	to other treatments against powdery mildew on squash	3'
1.2.	Protective treatment effectiveness of Azoxystrobin alone and	
	in mixture compared to curative treatment against powdery	
	mildew on squash plants	4
2.	Effectiveness of strobilurin group fungicides and their	
	mixtures impact on yield	43
3.	Determine the period of protection for these pesticides	4
3.1.	Time period of Azoxystrobin protection against powdery	
	mildew on squash after last application in both protective and	
	curative application methods	4
3.2.	Azoxystrobin effectiveness after 5 days of last application at	
	day 25 of evaluation in protective and curative application	
	methods	4′
3.3.	Azoxystrobin effectiveness after 10 days of last application at	
	day 30 of evaluation in protective and curative application	
	methods	48
3.4.	Azoxystrobin effectiveness after 15 days of last application at	
	day 35 of evaluation in protective and curative application	
	methods	50
4.	Induction of resistance for powdery mildew by using K ₂ HPO ₄	
	and KH ₂ PO ₄	5
SUM	MARY	5.
REFI	ERENCES	5:
ARA	BIC SUMMARY	

LIST OF TABLES

Table No.		Page
Table 1	Strobilurin value per million dollars in Egyptian market	
	in 2015 – 2017	3
Table 2	The common diseases and the recommended	
	Strobilurins in Egypt	5
Table 3	List of commercial products used for field trials and	
	their rates	35
Table 4	Mean % effectiveness of Azoxystrobin alone and in	
	mixtures as curative application against powdery	
	mildew on squash	38
Table 5	Mean % effectiveness of Azoxystrobin alone and	
	mixture as protective application compared to other	
	treatments against powdery mildew on squash	39
Table 6	Mean % effectiveness of protective application	
	treatments compared to the same curative application	
	treatments against powdery mildew on squash	42
Table 7	Total weight of yield in ton / acre at protective	
	application method	43
Table 8	Total weight of yield in ton / acre at curative application	
	method	44
Table 9	Total weight of yield increased over the check in ton per	
	acre for treatments in protective and curative	
	methods	46
Table 10	Azoxystrobin effectiveness after 5 days of last	
	application at day 25 of evaluation in protective	
	application method	47
Table 11	Azoxystrobin effectiveness after 5 days of last	
	application at day 25 of evaluation in curative	48
	application method	

Table No.		Page
Table 12	Azoxystrobin effectiveness after 10 days of last	
	application at day 30 of evaluation in protective	
	application method	49
Table 13	Azoxystrobin effectiveness after 10 days of last	
	application at day 30 of evaluation in curative	
	application method	49
Table 14	Azoxystrobin effectiveness after 15 days of last	
	application at day 35 of evaluation in protective	
	application method	50
Table 15	Azoxystrobin effectiveness after 15 days of last	
	application at day 35 of evaluation in curative	
	application method	50

LIST OF FIGURES

Fig. (1)	Strobilurin value/ million dollars in Egyptian market	3
Fig. (2)	Mean % effectiveness of Azoxystrobin alone and in	
	mixtures as curative application	37
Fig. (3)	Mean % effectiveness of Azoxystrobin alone and mixture	
	as protective application	40
Fig. (4)	Mean % effectiveness of protective application compared	
	to the same curative application	42
Fig. (5)	Azoxystrobin effect on increases of yield at protective	
	application method	44
Fig. (6)	Azoxystrobin effect on increases of yield at curative	
	application method	45
Fig. (7)	Azoxystrobin effect on increases of yield over the check at	
	protective and curative application methods	46
Fig. (8)	Time period of Azoxystrobin protection against powdery	
	mildew protective application methods	51
Fig. (9)	Time period of Azoxystrobin protection against powdery	
	mildew curative application methods	51

INTRODUCTION

Azoxystrobin is one of the most important active ingredients of the fungicide strobilurin group. It is leading the worldwide fungicides possessing broad spectrum systemic activity against the four major disease classes of pathogenic fungi (Bartlett et al., 2002). In Egypt, strobilurin holds from 15% to 17% of total market value of fungicides from 2015 to 2017, azoxystrobin compounds holds around 36% to 68% of strobilurin market value. In 2017 the value of strobilurin and their mixtures reached 7.9 million dollars of 48.1 million dollars of total fungicides value in Egyptian market. The strobilurin group of fungicides was detected by derivation of b-methoxyacrylic acid from natural fungicidal group and the production of it by wood-rotting of Strobilurus tenacellus. The mode of action of the strobilurins against fungi is the ability to inhibit mitochondrial respiration by binding these-called Qo site of cytochrome b. located in cytochrome bc1complex and that part of the inner mitochondrial membrane of fungi. This inhibition blocks the electron transfer between cytochrome b and cyto-chrome c1, that causes disruption of the fungus energy cycle, within halting the production of ATP (Dave et al., 2002).

Cucurbitaceae is an important family, which supplies humans with lot of edible products and useful fibers. Plants of cucurbits family are very similar in vegetative development, but they have a high genetic diversity for fruit shape and characteristics, resulting in a variety range of uses (**Dilson**, 2002). Powdery mildew disease causes devastation in cucurbits and yield can decline with increases disease severity (**Kabir**, 2011). However, the plants may resist the disease by using some non-chemical products like KH₂PO₄ and K₂HPO₄. The foliar fertilizers of phosphates and potassium salts are convenient to use with a potential useful impact in controling the disease (**Reuveni** et al., 1995). Powdery mildew caused by *Erysiphe cichoracearum* (**Bardin**, 1999) and *Podosphaera* fusca (synonyms: *P. xanthii*, syn. *Sphaerotheca fuliginea*