

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Impact of low carbohydrate diet on Type 1 Diabetic patients

Thesis

Submitted for partial fulfillment of MD degree in Internal Medicine By

Evit Ezzat Eid Iskandar

Bachelor of Medicine & Surgery Ain Shams University Master's degree in Internal Medicine

Prof. Dr. Mohamed Reda Halawa

Professor of Internal medicine, Diabetes & Endocrinology Internal Medicine, Diabetes and Endocrinology Department, Faculty of Ain Shams University

Medicine

Prof. Dr. Manal Mohamed Abou Shady

Professor of Internal Medicine, Diabetes & Endocrinology Internal Medicine, Diabetes and Endocrinology Department, Faculty of Medicine Ain Shams University.

Prof. Dr. Yara Mohamed Eid

Professor of Internal Medicine, Diabetes & Endocrinology Internal Medicine, Diabetes and Endocrinology Department, Faculty of Medicine Ain Shams University

Prof. Dr. Maram Mohamed Maher Mahdy

Professor of Internal medicine, Endocrinology & Diabetes
Internal Medicine, Diabetes and Endocrinology Department, Faculty of Medicine
Ain Shams University

Ass. Prof. Dr. Nagwa Roshdy Mohamed

Assistant Professor of Internal Medicine, Endocrinology & Diabetes
Internal Medicine, Diabetes and Endocrinology Department, Faculty of Medicine
Ain Shams University.

Faculty of Medicine Ain Shams University Cairo- Egypt 2022

ACKNOWLEDGEMENT

First, I would like to thank God for blessing this work until it has reached its end, as a part of his generous guidance and help throughout my life.

I would like to express my sincere gratitude to **Prof. Dr. Mohamed Reda Halawa** for his support, encouragement and the tremendous effort he has done in the thorough revision of the whole work.

I would like also to extend my thanks to **Prof**. **Dr. Manal Abou Shady** for her sincere guidance throughout this work.

My sincere appreciation for **Prof. Dr. Yara Eid** who has taken the time effort and patience to read and modify this work.

My profound indebtedness goes to **Prof. Dr. Maram Maher** for her detailed review of the work and her gentle correction.

My wholehearted thankfulness goes to **Ass. Prof. Dr. Nagwa Roshdy** for her prompt thorough revision and guidance throughout this work.

Last but not least I would like to acknowledge my gratefulness to **Dr**. **Sahar Ismail**, our dedicated professional and certified Diabetes Educator for helping me and my cases.

I would like to thank all participants for their cooperation, generosity and their patience.

My gratitude cannot be fulfilled without expressing my profound gratitude to my husband, my parents and siblings and even my friends who have been a rich source of concern and encouragement.

Contents

Title	Page No.
Introduction	0
Aim of work	1
Review of the Literature	
• Type 1 Diabetes	
Medical Nutrition Therapy	. 12
• Dietary regimens used in management of type 1 diabetes.	
Subject & Methods	30
Results	38
Discussion	61
Study limitations	70
Summary	71
Conclusion	73
Recommendations	74
References	75
Arabic Summary	91

List of Abbreviations

ACR	Albumin/ creatinine ratio		
ADA	American Diabetes Association		
ALT	Alanine transaminase		
ANOVA	Analysis of Variance		
AST	Aspartate transaminase		
BMI	Body mass index		
CBC	Complete blood count		
COVID-19	Corona Virus Disease of 2019		
CVD	Cardiovascular Disease		
DAFNE	Dose adjustment for normal eating		
DCCT	Diabetes control and complications trial		
DKA	Diabetic ketoacidosis		
dL	Decilitre		
FBG	Fasting blood glucose		
GAD65	Glutamic acid decarboxylase		
HbA1c	Glycated haemoglobin		
HDL	High density lipoprotein		
IA2	insulinoma-associated protein 2 (IA2)		
IQR	Interquartile range		
IU	International units		
KD	Ketogenic diet		
kg	Kilogram		
km	Kilometres		
LCMD	Low carbohydrate Mediterranean diet		
LDL	Low density lipoprotein		
mg	Milligram		
MNT	Medical Nutrition therapy		
NGSP	National haemoglobin standardization program		
NS	Non-significant		
P	Probability		
PBF	Percent body fat		
PC	Personal computer		
RMANOVA	Repeated measure Analysis of Variance		
S	Significant		

SD	Standard deviation	
SPSS	Statistical package for social sciences	
T1DM	Type 1 diabetes mellitus	
TDD	Total daily dose of insulin	
TG	Trigylcerides	
TLC diet	True low carbohydrate diet	
UKPDS	United Kingdom Prospective Diabetes Study	
USDA	United States Department of Agriculture	
VLCKD	Very low carbohydrate ketogenic diet	
ZNT8	zinc transporter 8	

List of Tables

Table	Table title	Page	
number		No.	
Table 1	Table 1 Stages of type 1 diabetes		
Table 2	25		
Table 3	27		
Table 4			
Table 5	Patient's data before intervention	38	
Table 6	Comparison of the mean of each	39	
	parameter at baseline and at 3 and 6		
	months		
Table 7a Comparison of HbA1c at 0,3,6 months			
Table 7bPost hoc analysis of HbA1c		40	
Table 8a Comparison of TDD at 0,3 and 6 months		42	
Table 8b Post hoc analysis of TDD		42	
Table 9a	Comparison of hypoglycaemia at 0,3, 6	44	
	months		
Table 9b	Post hoc analysis of hypoglycaemia	44	
Table 10a	Comparison of hyperglycaemia	45	
Table 10b Post hoc analysis of hyperglycaemia		46	
Table 11a Comparison of body weight		47	
Table 11b	Post hoc analysis of body weight	47	
Table 12a	Comparison of BMI	48	
Table 12b	Post hoc analysis of BMI	48	

Table 13a	Comparison of percent body fat		
Table 13b	Post hoc analysis of percent body fat	49 50	
Table 14	Comparison of PBF changes in both	51	
Table 14	genders	31	
ED 11 4 F			
Table 15a	Comparison of skeletal muscle mass	52	
Table 15b	Post hoc analysis of skeletal muscle mass	52	
Table 16a	Comparison of total cholesterol levels	53	
Table16b	Post hoc analysis of total cholesterol	53	
Table 17a	Comparison of triglycerides level	54	
Table 17b	Post hoc analysis of triglycerides level	54	
Table 18a	Comparison of LDL levels	54	
Table 18b	Post hoc analysis of LDL levels	55	
Table 19	Comparison of HDL levels	55	
Table 20a	Comparison of liver enzymes levels	55	
Table 20b	Post hoc analysis of ALT	56	
Table 20c	Post hoc analysis of AST	56	
Table 21a	Comparison of urinary albumin/creatinine	56	
	ratio		
Table 21b	Post hoc analysis of urinary	57	
	albumin/creatine ratio		
Table 22a	Comparison of serum albumin	57	
Table 22b	Post hoc analysis of albumin		
Table 23	Comparison of haemoglobin levels		
Table 24	Table 24 Comparison of serum creatinine		

List of figures

Figure	Figure title	Page No.
No.		
Figure 1	Enrolment allocation and attrition of	34
	participants	
Figure 2	Line graph showing changes in HbA1c	41
Figure 3	A bar chart showing the number of cases	41
	achieving target HbA1c at baseline, 3 and	
	6 months.	
Figure 4	Line graph showing changes in TDD	43
Figure 5	Line graph showing changes in	45
	hypoglycaemia	
Figure 6	Line graph showing changes in	46
	hyperglycaemia	
Figure 7	Line graph showing changes in weight	47
Figure 8	Line graph showing changes in BMI	49
Figure 9	Line graph showing changes in PBF	50
Figure 10	Line graph showing changes in albumin	58
Figure 11	Line graph showing changes in	59
	haemoglobin	
Figure 12	Line graph showing changes in creatinine	60

رسالة توطئة للحصول على درجة الدكتوراه في امراض الباطنة العامة

تحت عنوان: تأثير اتباع نظام غذائي قليل النشويات على مرضى السكري من النوع الاول

مقدمه: إيفيت عزت عيد إسكندر

بكالوريوس الطب والجراحة, درجة الماجستير في امراض الباطنة العامة , كلية الطب , جامعة عين شمس تحت اشراف

ا.د./ محمد رضا حلاوة

أستاذ امراض الباطنة و الغدد الصماء و السكر قسم امراض الباطنة و الغدد الصماء و السكر ، كلية الطب جامعة عين شمس

أ. د./ منال محمد أبو شادى

أستاذ امراض الباطنة و الغدد الصماء و السكر قسم امراض الباطنة و الغدد الصماء و السكر ، كلية الطب جامعة عين شمس

أ. د./ يارا محمد عيد

أستاذ امراض الباطنة و الغدد الصماء و السكر قسم امراض الباطنة و الغدد الصماء و السكر ، كلية الطب جامعة عين شمس

أ.د./ مرام محمد ماهر مهدي

أستاذ امراض الباطنة و الغدد الصماء و السكر قسم امراض الباطنة و الغدد الصماء و السكر ، كلية الطب جامعة عين شمس

ا.م .د./ نجوی رشدي محمد

أستاذ مساعد امراض الباطنة و الغدد الصماء و السكر قسم امراض الباطنة و الغدد الصماء و السكر ، كلية الطب جامعة عين شمس.

كلية الطب جامعة عين شمس القاهرة-مصر 2022

Introduction

Diabetes mellitus is a metabolic disease characterized by hyperglycemia resulting from defects in insulin secretion or insulin action or both. The chronic hyperglycemia of diabetes is associated with impairment and failure of different organs. [Zheng et al, 2018]

Type 1 diabetes is a failure of the pancreatic beta cells to produce insulin. **[Katsarou et al, 2017]**

The discovery of insulin a century ago is a revolution in the management of this chronic autoimmune disorder. Currently, type 1 diabetes is the most common type of diabetes in children. Estimates suggest that around 100,000 children develop the disease every year [Patterson et al, 2019].

Despite the availability of advanced insulins, affected individuals remain at high risk of serious complications, including cardiovascular mortality [Petrie et al, 2019].

New interventions are, therefore required to improve the prognosis of this growing population of diabetics.

New interventions include changing the ratios of food intake in an attempt to decrease carbohydrate intake. This modification is thought to decrease attacks of hyperglycaemia by limiting the carbohydrate intake. Insulin doses will also decrease following the reduced carbohydrate intake, reducing the risk of hypoglycaemia and glucose excursions altogether. [Corbin et al, 2018]

	Aim of the work
	To assess the impact of low carbohydrate diet on type 1 diabetic patients.
	1
1	<u>.</u>

Review of the Literature

Type 1 Diabetes

Type 1 diabetes is a chronic illness characterised by autoimmune destruction of the beta cell mass in the pancreatic islets of Langerhans [Katsarou et al, 2017]. Hypotheses suggest that the loss of functional beta cell mass occurs in a chain of events synonymous to an 'assisted suicide', where the loss of the beta cell is likely due to a combination of a dysfunctional beta cell that becomes more visible to the immune system. The immune system in turn, overreacts and destroys the beta cell. [Roep et al, 2020]

In its early stage (Stage 1), type 1 diabetes is usually asymptomatic; however, the development of autoimmunity is often detectable in early life, with circulating autoantibodies targeting insulin or other proteins, such as GAD65, insulinoma-associated protein 2 (IA2) or zinc transporter 8 (ZNT8) . When a large portion of the beta cell mass has become dysfunctional or lost, asymptomatic dysglycaemia (Stage 2) and, later, symptoms of hyperglycaemia (Stage 3) ensue due to insufficient or absent insulin secretion. [Pociot et al, 2016]

Also Type 1 diabetes is considered as a polygenic disorder, in which susceptibility loci or genetic variation contributes to risk of the disease. The HLA region on chromosome 6 is the main susceptibility locus. In recent years, many other loci across the genome have been associated with the disease risk. It has become evident that non-genetic factors play a major role in triggering or perpetuating overt type 1 diabetes by studying monozygotic twins [Redondo et al, 2008].

A multitude of efforts have failed at robustly identifying such factors hence no single pathogen is responsible. Infection by some enteroviruses and herpes viruses have also been suggested [Sabouri et al, 2020].

People living with type 1 diabetes remain dependent on exogenous insulins as the cornerstone medical option [ADA, 2022]

Since the isolation of insulin in 1921, novel and versatile formulations, analogues and delivery methods have been discovered [Beck et al, 2019]

With much improved glucose monitoring, these advances have contributed to the increases in the survival and life expectancy of type 1 diabetics [Miller et al, 2012].

Still, only a minority of type 1 diabetics achieve recommended glycaemic and time-in-range targets [Weinstock, 2016], and hyperglycaemia continues to be a threat causing short-term metabolic and long-term macro- and microvascular complications [Petrie et al, 2019].

The use of exogenous insulins requires dedicated glycaemic monitoring and dose titration to minimize the risk of hypoglycaemia. The all-cause mortality risk is around threefold higher for the type 1 diabetics than for the general population, and type 1 diabetes has been shown to be linked to cardiovascular outcomes more than any other disease [Schofield et al, 2019].

Diagnostic criteria by the American Diabetes Association (ADA) in 2022 include the following:

- A fasting plasma glucose (FPG) level ≥126 mg/dL (7.0 mmol/L), or
- A 2-hour plasma glucose level ≥200 mg/dL (11.1 mmol/L) during a 75-g oral glucose tolerance test (OGTT), or
- A random plasma glucose ≥200 mg/dL (11.1 mmol/L) in a patient with classic symptoms of hyperglycemia or hyperglycemic crisis

• A1C ≥6.5% (48 mmol/mol). The test should be performed in a laboratory using a method that is NGSP certified and standardized to the DCCT assay.

Table1: Stages of type 1 diabetes are according to ADA 2022:

	Stage 1	Stage 2		Stage 3
	Autoimmunity Normoglycemia	1.	AutoimmunityDysglycemia	New-onset
Characteristics	•Presymptomatic	3.	• Presymptomatic	Symptomatic
		1.	• Multiple autoantibodies	
		2.	• Dysglycemia: IFG and/or IGT	
		3.	• FPG 100–125 mg/dL (5.6–6.9 mmol/L)	
		4.	• 2-h PG 140–199 mg/dL (7.8–11.0	
	Multiple		mmol/L)	Clinical symptoms
Diagnostic criteria	autoantibodies No IGT or IFG	5.	• A1C 5.7–6.4% (39–47 mmol/mol) or ≥10% increase in A1C	Diabetes by standard criteria

Characteristics and diagnostic criteria of the stages of type 1 diabetes [ADA, 2022]

It is important to recognise the stages of diabetes as this is crucial for appropriate prompt treatment. A misdiagnosis of the type of diabetes may delay the introduction of insulin to the patient.

As mentioned earlier, novel interventions are needed for the management of type 1 diabetes. Whilst progress has been limited, the evolving profile of a person with type 1 diabetes suggests that beyond ensuring accurate titration of exogenous insulin, efficient management of the disease should rely on other additional principles.

Diet modification has always been a very important line of management when handling a case of diabetes especially type 1 diabetes.

Current status of individuals with type 1 diabetes

Around 10% of all people with diabetes have **type 1 diabetes**. More than 1.2 million children and adolescents (0-19 years) are living with type 1 diabetes [**IDF**, **2021**]

The incidence in Egypt is about 8/100 000 per year. Currently, diabetes is a leading cause of <u>vision loss</u> in Egypt. It is estimated that 42% of patients with diabetes in Egypt have <u>diabetic retinopathy</u>, 5% are legally blind, and 22% had peripheral neuropathy. Diabetes is also the major cause of end-stage renal disease and <u>leg amputation</u> in Egypt. [El-Ziny et al, 2014]

In the long-term due to lifetime exposure to imperfect glucose control, people with type 1 diabetes are at increased risk of microand macrovascular complications [Livingstone et al, 2019]

The American Diabetes Association guidelines suggest a target HbA1c of <7.0% as primary management target to reduce the risk of long-term diabetes-related complications [ADA, 2022].

Only 21% of adults with type 1 diabetes have achieved the ADA HbA1c goal of <7.0% [Foster et al, 2019]

Currently, intense insulin regimens, monitoring of blood glucose and carbohydrate counting are standard ways of treating type 1 diabetes. The fact that HbA1c levels are deteriorating, rather than