

## بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

| N   |         | T R               | ملاحظات:   |
|-----|---------|-------------------|------------|
| 4 1 | 6997    |                   |            |
|     | AIMSWAM | R. CIVILLE HARINA |            |
| 1   | 5/15/20 | 1992              | - 1 3 m. f |

بمكات وتكنولوجبارته



#### Evaluation of the Relationship between Carotid Intima Media Thickness and Coronary Artery Disease in Patients Evaluated by CT Coronary Angiography

#### Thesis

Submitted for Partial Fulfillment of Master Degree in Radiodiagnosis

 $\mathcal{B}y$ 

Samar Essam Abdul Azziz Mohamed (M.B., B.Ch.)

Supervised by

#### **Prof. Dr. Ahmed Samir Ibrahim**

Professor of Radiology
Faculty of Medicine □ Ain Shams University

#### Dr. Hend Galal Fldeen Mohamed Ali Hassan

Lecturer of Radiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2022



سورة البقرة الآية: ٣٢

### Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr. Ahmed Samir Ibrahim, Professor of Radiology, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Dr. Hend Galal Eldeen

Mohamed Ali Hassan, Lecturer of Radiology, Faculty of

Medicine, Ain Shams University, for his sincere efforts,

fruitful encouragement.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Samar Essam Abdul Azziz Mohamed

# List of Contents

| Title                                        | Page No. |
|----------------------------------------------|----------|
| List of Abbreviations                        | i        |
| List of Tables                               | iii      |
| List of Figures                              | iv       |
| Introduction                                 | 1        |
| Aim of the Work                              | 2        |
| Review of Literature                         |          |
| ☐ Radiological Anatomy of Normal Coronary Ar | teries 3 |
| □ Pathology                                  | 24       |
| ☐ Principles of Multi-Detector CT            | 41       |
| Patients and Methods                         | 73       |
| Results                                      | 80       |
| Illustrated Cases                            | 89       |
| Discussion                                   | 104      |
| Summary                                      | 112      |
| Conclusion                                   | 113      |
| Study Limitations                            | 114      |
| Clinical Implications                        | 115      |
| Recommendations                              | 116      |
| References                                   | 117      |
| Arabic Summary                               |          |

## List of Abbreviations

| Abb.          | Full term                                            |
|---------------|------------------------------------------------------|
| ACAS          | Asymptomatic Carotid Artery Study                    |
|               | Acute coronary syndrome                              |
|               | Coronary artery disease                              |
|               | Coronary Artery Disease Reporting and Data<br>System |
| CC            | Common carotid                                       |
|               | Common carotid artery                                |
|               | Carotid intima media thickness                       |
|               | Curved planar reformation                            |
|               | Circumflex artery                                    |
|               | Dual-source computed tomography                      |
|               | External carotid artery                              |
|               | European Carotid Surgery Trial                       |
|               | Internal carotid artery                              |
|               | Ischemic heart disease                               |
|               | Internal maxillary artery                            |
|               | Intima media thickness                               |
|               | Interquartile range                                  |
| <i>LA</i>     | · ·                                                  |
|               | Left anterior descending                             |
|               | Left coronary artery                                 |
|               | Left circumflex artery                               |
|               | Low-density lipoproteins                             |
|               | Left internal mammary artery                         |
| <i>LM</i>     | <u> </u>                                             |
| LV            | Left ventricle                                       |
| <i>MDCT</i>   | Multi-detector row computed tomography               |
| <i>MIP</i>    | Maximum intensity projection                         |
|               | Multiplanar reformation                              |
| <i>NASCET</i> | North American Symptomatic Carotid                   |
|               | Endarterectomy Trial                                 |
| <i>NS</i>     | Non significant                                      |
| <i>OM</i>     | Obtuse marginal                                      |
| PDA           | Posterior descending artery                          |

## List of Abbreviations cont...

| Abb.      | Full term                              |
|-----------|----------------------------------------|
|           |                                        |
| <i>PL</i> | Posterolateral                         |
| <i>RA</i> | Right atrium                           |
| RCA       | Right coronary artery                  |
| RI        | Ramus intermedius                      |
| RI        |                                        |
|           | Right internal mammary artery          |
| S         | • •                                    |
| SD        | Standard deviation                     |
| SPSS      | Statistical package for Social Science |
|           | Superficial temporal artery            |
| SVC       | Cavae both superior                    |
|           | Ultra high resolution CT scan          |
|           | Volume rendering                       |
|           | Volume-rendering techniques            |

## List of Tables

| Table No  | . Title                                                                 | Page No.      |
|-----------|-------------------------------------------------------------------------|---------------|
| Table 1:  | CAD RADS classification                                                 | 46            |
| Table 2:  | Common carotid artery IMT reference li                                  |               |
| Table 3:  | Demographic data for the study group                                    | 80            |
| Table 4:  | Past medical history for the study group                                | 81            |
| Table 5:  | Carotid intimal media thickness for the s                               | study group82 |
| Table 6:  | Relation between demographic data a score                               |               |
| Table 7:  | Relation between past medical history score.                            |               |
| Table 8:  | Relation between carotid intimal medial CAD Rads score                  |               |
| Table 9:  | The most common affected coronary vess conducted on Egyptian population | •             |
| Table 10: | Relation between CIMT and severity of t                                 | he CAD87      |

# List of Figures

| Fig. No.   | Title                                                                                                                             | Page No.                                                   |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Figure 1:  | Base of the heart                                                                                                                 |                                                            |
| Figure 2:  | Apex and anterior surface of the                                                                                                  |                                                            |
| Figure 3:  | Diaphragmatic surface of the hea                                                                                                  |                                                            |
| Figure 4:  | Graphic showing overview of right and left coronary arteries a                                                                    | the origin of                                              |
| Figure 5:  | Axial MIP images showing the pand its conus branch                                                                                |                                                            |
| Figure 6:  | 3D volume rendered (VR of posterior view of the heart sl dominant system with the PDA PLB (open arrow) originating (curved arrow) | hows a right<br>A (arrow) and<br>g from RCA                |
| Figure 7:  | Axial MIP images showing the artery (LCA) divides almost impute the circumflex artery (Cx) and descending artery (LAD)            | left coronary<br>nediately into<br>left anterior           |
| Figure 8:  | 3D VR CTA images of 2 different                                                                                                   | t patients11                                               |
| Figure 9:  | 3D VR CTA image demon<br>epicardial surface anatomy of t<br>LCX as they arise from the LMC                                        | nstrates the<br>the LAD and                                |
| Figure 10: | 3D VR CTA image demonstrate and PLB branches arising from the dominant system                                                     | ting the PDA<br>the LCX a left                             |
| Figure 11: | 3D volume rendered (VR of posterior view of the heart sl dominant system with the PDA PLB (open arrow) originating (curved arrow) | CTA) image,<br>hows a right<br>A (arrow) and<br>g from RCA |
| Figure 12: | Left coronary artery dominance.                                                                                                   | 15                                                         |

| Fig. No.   | Title                                                                                                                                                                                                                                                                         | Page No.                                                                        |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Figure 13: | (a) 3D VR CTA images shows a left system with the PDA (arrow) and arrow) originating from the LC arrow). (b) Shows a co-domina where RCA (curved arrow) supplied (arrow) and left ventricle posterol is supplied (posterolateral bra arrow) by branches of the LCX (doubted). | PLB (open<br>CX (double<br>ant system<br>es the PDA<br>ateral wall<br>nch, open |
| Figure 14: | Diagram showing the aortic arc origin of carotid arteries                                                                                                                                                                                                                     |                                                                                 |
| Figure 15: | The aortic arch types based<br>relationship of the origins of the s<br>vessels to the parallel plane perpe<br>the outer curvature of the of the arch                                                                                                                          | supraaortic<br>endicular to                                                     |
| Figure 16: | Normal intima media thickness carotid artery                                                                                                                                                                                                                                  |                                                                                 |
| Figure 17: | Diagram displaying major brance external carotid artery                                                                                                                                                                                                                       |                                                                                 |
| Figure 18: | Diagram showing segments and binternal carotid artery                                                                                                                                                                                                                         |                                                                                 |
| Figure 19: | Progression of atherosclerosis of streak, formation of subintima further lipid deposition and final rupture with subsequent thrombog                                                                                                                                          | al plaque,<br>ally plaque                                                       |
| Figure 20: | The different compositions of atherosclerotic plaques                                                                                                                                                                                                                         | coronary                                                                        |
| Figure 21: | Vascular remodeling                                                                                                                                                                                                                                                           | 30                                                                              |
| Figure 22: | Development of atherosclerosis                                                                                                                                                                                                                                                | 33                                                                              |
| Figure 23: | A typical ruptured vulnerable plaq                                                                                                                                                                                                                                            | ue34                                                                            |
| Figure 24: | Histopathologic features of unstabl                                                                                                                                                                                                                                           |                                                                                 |

| Fig. No.   | Title                                                                                                                                          | Page No.                            |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Figure 25: | Coronary pathology in acute syndrome                                                                                                           |                                     |
| Figure 26: | Organizing occlusive thrombus                                                                                                                  | 36                                  |
| Figure 27: | Arms above the head, the carina is to border while the base of the heart is border                                                             | the lower                           |
| Figure 28: | Normal Coronary artery CT                                                                                                                      |                                     |
| Figure 29: | A typical acquisition using the $\Box$ hamethod on multidetector CT                                                                            | alf scan□                           |
| Figure 30: | A demonstration of a theoretical imamultisegment reconstruction                                                                                |                                     |
| Figure 31: | Retrospective scanning method                                                                                                                  | 52                                  |
| Figure 32: | The evaluated dual-source tomography (DSCT) system with a sillustration of the acquisition princitwo tubes and two corresponding offset by 90° | schematic<br>ple using<br>detectors |
| Figure 33: | Axial images at different anatomical                                                                                                           |                                     |
| Figure 34: | Multiplanar reconstructions (MPR coronary CT angiography exadisplaying the proximal LAD                                                        | s) for a<br>amination               |
| Figure 35: | Curved MIP image (7 mm slab thick the RCA                                                                                                      | ekness) of                          |
| Figure 36: | VRTs provide good insight into relationship of anatomical structure the case of anomalous coronary arbypass grafts                             | s, e.g., in<br>rteries or           |
| Figure 37: | Technique of carotid ultrasound exar                                                                                                           |                                     |
| Figure 38: | Color scale adjustment in caroti stenosis                                                                                                      | d artery                            |

| Fig. No.   | Title                                                                                                                                                                                                  | Page No.                                         |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Figure 39: | Normal intima media thickness of carotid artery                                                                                                                                                        |                                                  |
| Figure 40: | Normal Carotid Ultrasound Examina                                                                                                                                                                      | ation66                                          |
| Figure 41: | Types of carotid plaques class echogenicity and texture                                                                                                                                                |                                                  |
| Figure 42: | Different appearances of carotid place                                                                                                                                                                 | ques69                                           |
| Figure 43: | Methods of the measurement of the artery stenosis                                                                                                                                                      |                                                  |
| Figure 44: | Possible error during calculation velocity due to post stenotic flow dis (divergence), correct angel estimates sometimes be difficult or impossible to overestimation or underestimation flow velocity | sturbance<br>ation can<br>e leading<br>on of the |
| Figure 45: | Past medical history for the study gr                                                                                                                                                                  |                                                  |
| Figure 46: | Carotid intimal media thickness for group                                                                                                                                                              | the study                                        |
| Figure 47: | Relation between carotid intimathickness and CAD Rads score                                                                                                                                            | l medial                                         |
| Figure 48: | CT Coronary angiography, Axial of Proximal LCx mixed soft tissue are plaque causing significant stenosis                                                                                               | nd calcific                                      |
| Figure 49: | Curved multi planner reformat significant Proximal (LCx) mixed s and calcific plaque                                                                                                                   | showing<br>oft tissue                            |
| Figure 50: | 3D Volume rendering reforma proximal (LCx) significant lesion (ar                                                                                                                                      | t shows                                          |
| Figure 51: | Longitudinal view of the right carotid artery before bifurcation increased IMT reaching 1.2 cm                                                                                                         | common<br>showing                                |

| Fig. No.   | Title Pa                                                                                                  | ge No.         |
|------------|-----------------------------------------------------------------------------------------------------------|----------------|
| Figure 52: | Longitudinal view of the left common ca<br>artery before bifurcation showing incre<br>IMT reaching 1cm    | eased          |
| Figure 53: | Curved multi planner reformat of the shows mid LAD mixed soft tissue plansing borderline stenosis         | laque          |
| Figure 54: | Mid LAD mixed soft tissue lesion                                                                          |                |
| Figure 55: | Volume rendering 3D image                                                                                 | 93             |
| Figure 56: | Longitudinal view of the right concarotid artery before bifurcation short increased IMT reaching 1 cm     | nmon<br>owing  |
| Figure 57: | Longitudinal view of the left common ca<br>artery before bifurcation showing incre<br>IMT reaching 0.9 cm | eased          |
| Figure 58: | Axial cut shows left main (LM) mixed tissue plaque causing borderline stenosis                            |                |
| Figure 59: | Curved multiplanner reformat of the main (LM) showing mixed soft tissue placeusing borderline stenosis.   | laque          |
| Figure 60: | Volume rendering 3D image shows left (LM) borderline lesion                                               | main           |
| Figure 61: | Longtiudinal view of the right concarotid artery before bifurcation should increased IMT reaching 1 cm    | nmon<br>owing  |
| Figure 62: | Longitudinal view of the left common ca<br>artery before bifurcation showing incre<br>IMT reaching 1 cm   | rotid<br>eased |
| Figure 63: | Axial image showing proximal LAD n<br>soft tissue lesion causing significant sten                         | nixed          |

| Fig. No.   | Title                                                                                                      | Page No.            |
|------------|------------------------------------------------------------------------------------------------------------|---------------------|
| Figure 64: | Curved multiplanner reformat proximal LAD mixed soft tissue lesion causing significant stenosis            | n (arrow)           |
| Figure 65: | Volume rendering 3D image proximal LAD significant lesion                                                  | showing             |
| Figure 66: | Longitudinal view of the right carotid artery before bifurcation increased IMT reaching 1 cm               | showing             |
| Figure 67: | Longitudinal view of the left common artery showing increased IMT reaction.                                | hing 1.1            |
| Figure 68: | Axial image showing proximal LAD LAD non-significant mixed calcific tissue plaque (arrow)                  | and mid<br>and soft |
| Figure 69: | Curved Multiplanner reformat<br>proximal LAD and mid LAD non-si<br>mixed calcific and soft tissue plaque ( | gnificant           |
| Figure 70: | Volume rendering 3D reformat image                                                                         |                     |
| Figure 71: | Longitudinal view of the right CCA IMT reaching 0.8 mm                                                     | showing             |
| Figure 72: | Longitudinal view of the left CCA IMT reaching 0.7mm                                                       | _                   |

#### Introduction

oronary artery disease (CAD) is associated with high mortality around the world, hypertention, diabetes and smoking are common risk factors for CAD (Gheisari et al., *2020*).

Coronary and carotid arteries are the two most common to be affected by atherosclerosis (Saxena et al., 2019).

The relationship of the coronary and carotid atherosclerosis has been confirmed (Hulthe et al., 1997).

Many changes occur in the wall of the artery including endothelial dysfunction and increase in the intima media thickness (IMT) before appearance of the clinical symptoms so these changes are useful in early detection of atherosclerosis (Halcox et al., 2009).

It has been hypothesized that IMT would increase with hypertention, diabetes mellitus, hyperlipidemia, age and other factors that are related to CAD (Collins et al., 2012).

Interventional and non-interventional methods to detect atherosclerosis are widely used in clinical practice, carotid intima media thickness (CIMT) has been recommended by the American Heart Association as the most useful method to detect atherosclerosis (Papageorgiou et al., 2016).