

بسم الله الرهكن الرّحيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

PERFORMANCE OF HIGH VOLTAGE DIRECT CURRENT CIRCUIT BREAKER DURING AND AFTER ARC INTERRUPTION PROCESS.

By

Mohamed Niazi Taha Elfikky

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Electrical Power and Machines Engineering

PERFORMANCE OF HIGH VOLTAGE DIRECT CURRENT CIRCUIT BREAKER DURING AND AFTER ARC INTERRUPTION PROCESS.

By **Mohamed Niazi Taha Elfikky**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr. Ahdab El-Morshedy

Dr. Mohammed Ahmed El-Shahat

Professor of High Voltage engineering Electric power and machines Engineering Faculty of Engineering, Cairo University Associate Professor Electric power and machines Engineering Faculty of Engineering, Some University

PERFORMANCE OF HIGH VOLTAGE DIRECT CURRENT CIRCUIT BREAKER DURING AND AFTER ARC INTERRUPTION PROCESS.

By Mohamed Niazi Taha Elfikky

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Approved by the Examining Committee

Prof. Dr. Ahdab El-Morshedy, Thesis I

Thesis Main Advisor

Faculty of Engineering, Cairo University

Prof. Dr. Hussein Anis,

Internal Examiner

Faculty of Engineering, Cairo University

Prof. Dr. Mousa Awad-Allah Abd-Allah External Examiner Faculty of Engineering at Shoubra, Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022 Engineer's Name: Mohamed Niazi Taha Elfikky

Date of Birth: 22 / 01 / 1995 **Nationality:** Egyptian

E-mail: m.n.elfikky@gmail.com

Phone: 01007929986

Address: 6th Salam street-Maadi-Cairo-Egypt

Registration Date: 10 / 2017 **Awarding Date:**/2022 **Degree:** (Master of Science)

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Ahdab El-Morshedy Prof. Mohammed El-Shahat

Examiners:

Prof. Dr. Ahdab El-Morshedy (Thesis main advisor)

Prof. Dr. Hussein Anis (Internal examiner)

Prof. Dr. Mousa Awad-Allah Abd-Allah (External examiner)

Title of Thesis:

Performance of High Voltage Direct Current Circuit Breaker during and after Arc Interruption Process.

Key Words:

HVDC; CB; Arc interruption; Fault; Modelling

Summary:

In this thesis we simulated the arc using 2 different methods to gain an inclusive view over the different factors that affect eh arcing process. First, we used the MATLAB Simulink tool to simulate the arc using Mayr arc model, which gave us the current and voltage of the CB during the fault interruption process. Then we used ANSYS fluent to simulate the physical arc model which give us a good explanation for the interaction between arc and fluid flow inside the braker during the interruption process. We found that the interruption of the pole to ground fault would cause an immense heat to be generated leading to a decrease in dielectric strength of the SF6 gas after the arc is interrupted leading to a discharge around the hollow contact, we also found that the decrease in solid contact diameter would cause a decrease in interruption capabilities of the CB.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited

them in the references section.

Name: Mohamed Niazi Taha Elfikky Date: / /20	022
--	-----

Signature:

Dedication

This work is dedicated to my parents, who taught me that there's never an impossible for those who try.

Acknowledgments

First of all, thanks to Allah who supported and strengthened me in all of my life and in completing my studies for Master of Science (M.Sc.) degree.

I would like to deeply express my thanks and gratitude to my supervisors, Prof. Ahdab Elmorshidy and Prof. Mohammed El-Shahat, electrical Power and Machines engineering, Faculty of Engineering, Cairo University, for their faithful supervision, enormous efforts and their great patience during the period of research.

Finally, I would like to thank my family for their great inspiration, Kind support and continuous encouragement.

Table of Contents

DISCLAMER	I
DEDICATION	II
ACKNOWLEDGMENTS	III
TABLE OF CONTENTS	IV
LIST OF TABLES	VII
LIST OF FIGURES	VIII
LIST OF ABBREVIATIONS	
ABSTRACT	
ADSTRACI	АШ
Chapter 1: introduction	1
1.1 HVDC Transmission	
1.1.1 Back-to-back	
1.1.2 Monopole	
1.1.3 Bipolar	
1.2 HVDC Technologies	
1.2.2 Self-Commutated Voltage Source Converter (VSC)	
1.3 HVDC Circuit Breakers	
1.4 Construction of the Thesis	
Chapter 2: Literature Review	7
2.1 Introduction.	7
2.2 SF6 Circuit Breakers	
2.2.1 Main Parts of SF6 Gas CB	
2.2.2 Different Operating Mechanisms in SF6 gas CB	10
2.2.3 HVDC Faults	12
2.2.4 Commutation Circuit types	13
2.2.4.1 Passive Commutation Circuit	
2.2.4.2 Active Commutation Circuit	13
2.2.5 Controlling the Rate of Rise of Recovery Voltage	15
2.2.6 Energy Absorbing Element	
2.3 Physical Arc Interruption Inside the SF6 CBs	
2.3.1 Electric Arc Formation	
2.3.2 Electric Arc Characteristics	
2.3.3 Electric Arc Interruption	
2.3.3.1 AC Interruption	
2.3.3.2 DC Interruption	
2.3.4 Interruption of Electric Arcs in the SE6 Gas CRs	20

	Modeling	
2.5 Prev 2.5.1	vious Researches	
2.3.1	Wave	
252		
2.5.2	Discharge inside the CB after the Interruption Process	
2.5.3	Effect of CB Geometry on the Interruption Process	23
Chap	ter 3: Computational Methods	24
•	•	
	TLAB Simulinkys Fluent	
3.2 Alls	•	
	Design Consideration for CB	
_	ter 4: Arc Parameters and Fault Impedance effect on	
	ient of Arc Current and Rate of Rise of Recovery Vol	_
Using	g Mayr Arc Model	31
4.1 Met	hod and Simulation	31
	ulation Results	
4.2.1	Arc Time Constant (τ)	32
4.2.2	Cooling Power (P)	35
4.2.3	1	
4.3 Con	clusion	42
Chap	ter 5: Assessing the discharge around the CB arcing	contacts
after	arc interruption	43
5.1 Mot	hod and Simulation	12
	ulation Results	
5.2.1		
5.2.2		
5.2.3	Distributions at the Instant of Arc Interruption	51
5.2.4		
5.3 Con	clusion	
Chan	tor 6. Effect of Contact geometry on temperature on	A
_	ter 6: Effect of Contact geometry on temperature and ure during the interruption process	
-		
	hod and Simulation	
6.2 Sim	ulation Results Temperature and Pressure distributions	
	5.2.1.1 Solid Contact Results	
	5.2.1.2 Hollow Contact Results	
	clusion.	

Chapter 7: Conclusion and Future Work	91
7.1 Results Summery	91 92
References	93
Appendix A: MHD Equations of Ansys Fluent	98
Published work	100

List of Tables

Table 3.1: Commutation Circuit Parameters	.25
Table 4.1: Values of the Commutation Circuit Components	31
Table 4.2: Values of di/dt and the RRRV for each Case	
Table 5.1: The Duration of Electric Discharges at each Point Around the Hollow Contact	.57

List of Figures

Figure 1.1 (a): Monopole Configuration	2
Figure 1.1 (b): Bipolar Configuration	
Figure 1.2: Conventional HVDC with Current Source Converters	3
Figure 1.3: HVDC with Voltage Source Converters	
Figure 2.1: Pole standing on its Own Support Leg Configuration	9
Figure 2.2: 3 Poles Standing on 2 Legs	9
Figure 2.3: Grading Capacitors	
Figure 2.4: Spring Mechanism of the CB	11
Figure 2.5:Hydraulic Mechanism of the CB	12
Figure 2.6:Construction of the Passive Commutation Circuit	14
Figure 2.7:Construction of the Active Commutation Circuit	
Figure 2.8: Degree of Ionization of Different Gases and Metal Vapours	16
Figure 2.9:Electrical Conductivity Value Increase with the Increase in Temperature	
Figure 2.10:A Simple Arc Column between the Anode and the Cathode	
Figure 2.11: Change in Thermal Conductivity of SF6 Gas with Temperature	
Figure 2.12: Construction of the Puffer Type CB	
Figure 3.1: Commutation Test circuit	25
Figure 3.2: Arc Current	
Figure 3.3:CB Voltage	26
Figure 3.4: Design of the Breaker Used in the Simulation	28
Figure 3.5:The Meshed Geometery of the CB	
Figure 4.1:CB Arc Current at Different Arc Time Constant Values	32
Figure 4.2:CB Voltage for Different Arc Time Constant Values	
Figure 4.3:di/dt Curve with Arc Time Constant Value	
Figure 4.4:RRRV Curve with Arc Time Constant Value	34
Figure 4.5:Arc Current Simulation for the some Values of Cooling power	
Figure 4.6:Effect of Changing the Cooling Power on Arc Current Gradient di/dt	36
Figure 4.7:CB Voltage for the Cooling Powers of 8.5, 16, 19, 21, 30 MW	37
Figure 4.8:Effect of Changing Cooling Power on the RRRV	
Figure 4.9:Effect of Low Cooling Power Value on Arc Current	
Figures 4.10:Arc Current for Different Fault Impedances	
Figures 4.11:CB Voltage for Different Fault Impedances	
Figure 5.1: Arc Current	44
Figure 5.2:CB Voltage	44
Figure 5.3 (a):Electric Field Distribution in MV/m at 3kAmp	45
Figure 5.3 (b):Electric Field Distribution in MV/m at 4kAmp	
Figure 5.3 (c):Electric Field Distribution in MV/m at 5kAmp	
Figure 5.3 (d):Electric Field Distribution in MV/m at 6kAmp	
Figure 5.4 (a):Arc Temperature Distribution in Kelvin at 3kAmp	
Figure 5.4 (b): Arc Temperature Distribution in Kelvin at 4kAmp	
Figure 5.4 (c): Arc Temperature Distribution in Kelvin at 5kAmp	
Figure 5.4 (d): Arc Temperature Distribution in Kelvin at 6kAmp	
Figure 5.5 (a):SF6 Gas Pressure Distribution in Pascal at 3kAmp	
Figure 5.5 (b):SF6 Gas Pressure Distribution in Pascal at 4kAmp	
Figure 5.5 (c):SF6 Gas Pressure Distribution in Pascal at 5kAmp	
Figure 5.5 (d):SF6 Gas Pressure Distribution in Pascal at 6kAmp	

Figure 5.6 (a): Electric Field Distribution in MV/m inside the CB	52
Figure 5.6 (b): SF6 Gas Pressure Distribution inside the CB	52
Figure 5.6 (c): Temperature Distribution in Kelvin inside the CB	53
Figure 5.7: Points of Study Around the Hollow Contact	
Figure 5.8 (a): Electric Field in MV/m for the Desired Points with Respect to Time after	
Interruption.	
Figure 5.8 (b): The SF6 Gas Pressure in Pascal for the Points with Respect to Time After	
Interruption	
Figure 5.8 (c): The Temperature in Kelvin for the Desired Points with Respect to Time A	After
Arc Interruption	
Figure 5.9: The Critical Electric Field Value Relation with the Pressure and Temperature	
Figure 6.1: The Calculation Line and Point	
Figure 6.2 (a): Temperature Distribution in Kelvin for 13.5 mm Radius Solid Contact at	
Current 3kAmp	60
Figure 6.2 (b): Temperature Distribution in Kelvin for 13.5 mm Radius Solid Contact at	
Current 5kAmp	
Figure 6.2 (c): Temperature Distribution in Kelvin for 13.5 mm Radius Solid Contact at	
Current 6kAmp	
Figure 6.3 (a): Pressure Distribution in Pascal for 13.5 mm Radius Solid Contact at Arc Cur	rrent
3kAmp	
Figure 6.3 (b): Pressure Distribution in Pascal for 13.5 mm Radius Solid Contact at Arc Cur	rrent
5kAmp.	62
Figure 6.3 (c): Pressure Distribution in Pascal for 13.5 mm Radius Solid Contact at Arc Cu	
6kAmp	62
Figure 6.4 (a): Temperature Distribution in Kelvin for 10 mm Radius Solid Contact at	Arc
Current 3kAmp	
Figure 6.4 (b): Temperature Distribution in Kelvin for 10 mm Radius Solid Contact at	Arc
Current 5kAmp	
Figure 6.4 (c): Temperature Distribution in Kelvin for 10 mm Radius Solid Contact at	Arc
Current 6kAmp	64
Figure 6.5 (a): Pressure Distribution in Pascal for 10 mm Radius Solid Contact at Arc Cur	rrent
3kAmp	
Figure 6.5 (b): Pressure Distribution in Pascal for 10 mm Radius Solid Contact at Arc Cur	rrent
5kAmp	
Figure 6.5 (c): Pressure Distribution in Pascal for 10 mm Radius Solid Contact at Arc Cur	rrent
6kAmp	
Figure 6.6 (a): Temperature Distribution in Kelvin for 7 mm Radius Solid Contact at	Arc
Current 3kAmp	
Figure 6.6 (b): Temperature Distribution in Kelvin for 7 mm Radius Solid Contact at	
Current 5kAmp	
Figure 6.6 (c): Temperature Distribution in Kelvin for 7 mm Radius Solid Contact at	
Current 6kAmp	
Figure 6.7 (a): Pressure Distribution in Pascal for 7 mm Radius Solid Contact at Arc Cu	
3kAmp.	
Figure 6.7 (b): Pressure Distribution in Pascal for 7 mm Radius Solid Contact at Arc Cu	
5kAmp.	
Figure 6.7 (c): Pressure Distribution in Pascal for 7 mm Radius Solid Contact at Arc Cu	
6kAmp	
~ 	

Figure kAmp.			Temperatures			Different				
			peratures Infro							
Figure		-	Temperatures						-	
_			-							
Eiguro	6.0	(0).	Pressures	Infront	f	Different	Salid	Contact	Cizos	ot 2
Figure										
Figure	6.9	(c):	Pressures	Infront	ΟI	Different	Sona	Contact	Sizes	at 5
			Pressures							
_		_	eratures at Poi							_
			ures at Poin							
Figure	6.12 (a	a): Ter	nperature Dist	tribution	for 7	mm Diame	ter Hollo	w Contact	at Arc	Current
Figure	6.12 (1	b): Ter	nperature Dist	tribution	for 7	mm Diame	ter Hollo	w Contact	at Arc	Current
_										
			nperature Dist							
			essure Distrib							
			essure Distrib							
_										
			essure Distrib							
			nperature Dist							
21. A mm	0.1 4 (a). 161		Hounon	101 9			w Contact	at Aic	Current
			nperature Dist							
_			nperature Dist							
_			essure Distrib							
_			essure Distrib							
Figure	6.15 ((c): Pr	essure Distrib	ution for	9 m	m Diamete	r Hollow	Contact	at Arc	Current
6kAmp										82
Figure	6.16 (a	a): Ten	nperatures Infi	ont of So	olid C	ontact for D	oifferent l	Hollow Co	ntact Si	izes at 3
kAmp.			·····							83
			nperatures Infi							
-										
			nperatures Infi							
			essure Infront							
_										
			essure Infront							
-										
KAIIID.										0 /