

بسم الله الرهكن الرّحيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

Detection of Early Cardiac Affection in Post-COVID Syndrome Using Heart Rate Variability and 2D Global Longitudinal Strain Echocardiographic Assessment of the Left Ventricle

Thesis

Submitted For Partial Fulfilment of Master's Degree in Cardiology

By

Mirna Bassem Elzarif Fouad

MBBCh, Faculty of Medicine, Ain Shams University

Under supervision of

Prof. Zainab Abdel Salam Fahmy Mahmoud

Professor of Cardiology Faculty of Medicine Ain Shams University

Dr. Amira Ahmed Nour El Din

Lecturer of Cardiology Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2022

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Zainab Abdel Salam Falmy Mahmoud,** Professor of Cardiology - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Amira Ahmed Mour El Din**, Lecturer of Cardiology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mirna Bassem Elzarif Fouad

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	vii
Introduction	1
Aim of the Work	2
Review of Literature	
Post-Acute COVID 19 Syndrome	3
2D Speckle Tracking Echocardiography	28
Heart Rate Variability	45
Subjects and Methods	51
Results	72
Discussion	108
Limitations	117
Summary	118
Conclusion	120
Recommendations	121
References	122
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1):	Average values of heart rate variable	•
Table (2):	Age and gender distribution amor	ng the
Table (3):	Distribution of cardiovascular risk	factors
Table (4):	among the studied patients Presenting post-COVID symptoms	in the
Table (5):	Relationship between post CO symptoms, demographic data and CV	VID-19
Table (6):	factors	75
Table (7):	population	77
Table (8):	Relation of GLS with demographic, CV factors and presenting symptoms	VS risk
Т-1-1- (O).	studied patients	82
Table (9):	Relationship between GLS and parameters.	86
Table (10):	Relation of SDNN with demographic risk factors and presenting post-	COVID
Table (11):	symptoms of the studied patientsRelation of SDNN to 2D echocardio	graphic
Table (12):	data and GLSRelationship between rMSSD, demog	raphic,
Table (13):	CVS risk factors and post-COVID symp Relation of rMSSD to 2D echocardios	•
Table (14):	data and GLSRelationship between LF/HF, CVS	101 S risk
	factors and post-COVID symptoms Relationship between LF/HF,	102
(-/-	echocardiographic data and GLS	

Tist of Figures

Fig. No.	Title	Page No.
Figure (1):	Nalbandian et al. describing the tim of COVID-19	
Figure (2):	1.7 Million people were experiencing reported long COVID as of 5 March 20	self-
Figure (3):	The frequency of symptoms by cluafter 30 days post-discharge	
Figure (4):	Prevalence of late gadolinenhancement (LGE) via cardiac magresonance imaging (MRI)	netic post-
Figure (5):	coronavirus disease 2019 (COVID-19) Servient et al. (2022) describing pathophysiological mechanisms under long term physical sequelae from CO	the lying
Figure (6):	19 infection	14 virus
	cardiorespiratory fitness	18
Figure (7):	Sympathetic stimulation in covid-19	23
Figure (8):	Covid-19-induced dysautonomia (DSN	J)26
Figure (9):	Assessment of rotation by dimensional speckle tracking at the of the base	level
Figure (10):	Spectral analysis of frequencies (Fourier Transform) of a normal y	Fast oung
	adult and a normal newborn	
Figure (11):	Example from our study, subject No (4	
Figure (12):	From study subject No (25) sho DICOM image presenting paraste long-axis view at the level of mid ca with M-mode across the LV measu	ernal avity
	IVS, PW, EDD, ESD, EF, and FS	

Fig. No.	Title	Page	No.
Figure (13A):	From study subject No (7) sh	_	
	DICOM image presenting apical chamber view with M-mode at the annulus of the mitral valve	septal	58
Figure (13B):	From study subject No (13) sh	nowing	
	DICOM image presenting apica		
	chamber view with M-mode at the annulus of the mitral valve		50
Figure (14):	From subject No. (43) showing D		99
riguic (14).	image presenting tracing of		
	endocardium at the apical four ar		
	champers view for estimation of		
	Simpson's method		60
Figure (15):	From study subject No (22), sh	_	
	DICOM image presenting paraslong axis view with M-mode along		
	aorta and left atrium showing norm		
	atrial diameter and aortic root diam		61
Figure (16):	From study subject No (31) sh	nowing	
	DICOM image presenting apica		
	chambers view with the pulsed		
	doppler placed over mitral values measure mitral inflow with mea		
	E/A ratio	_	62
Figure (17):	From study subject No (29) sh		
	DICOM image presenting apical		
	chambers view with TDI along the		
	mitral annulus showing normal	E/E'	CO
Figure (18):	value	ICOM	63
rigure (10).	image presenting apical four cha		
	view with M-Mode across the latera		
	of RV measuring TAPSE		64

Fig. No.	Title Page	No.
Figure (19):	From subject No (50) showing DICOM image presenting tracing of the endocardium at the apical long axis view as a step for calculating longitudinal strain	66
Figure (20):	From subject No (19) showing DICOM image presenting tracing of the endocardium at the apical four chambers view as a step for calculating longitudinal strain.	66
Figure (21):	From subject No (36) showing DICOM image presenting tracing of the endocardium at the apical two chambers view as a step for calculating longitudinal strain.	67
Figure (22):	From subject No (9) showing DICOM images presenting curves of the longitudinal strain of LV at the apical 4,3 and 2 chambers views with estimation of the global longitudinal strain and bull eye.	67
Figure (23):	From subject No (2) showing DICOM image showing Bull's eye map of each segment with global longitudinal strain (GLS) of 2, 3, and 4 chamber views and average GLS	68
Figure (24):	Average values of heart rate variability in	
Figure (25):	Gender distribution among the studied patients	
Figure (26):	Prevalence of cardiovascular risk factors in the studied patients	

Fig. No.	Title Page	No.
Figure (27):	Post-COVID symptoms distribution among	
	the study population	74
Figure (28):	Diastolic dysfunction in the study	
	population	78
Figure (29):	GLS grading among patients in the study	
	population	
Figure (30):	Mean age in different GLS groups	
Figure (31):	Showing negative linear correlation	
	between GLS and age with r -0.706 and p-	
	value of 0.003	
Figure (32):	Percentage of diabetics and hypertensives	
	in all GLS groups	
Figure (33):	GLS grading compared to dyspnea	
Figure (34):	Mean Min HR in relation to LVGLS	88
Figure (35):	Mean SDNN and SDANN in relation to	
	GLS	88
Figure (36):	Percentage of patients with normal versus	
	impaired SDNN in relation to LVGLS	89
Figure (37):	Showing negative linear correlation	
	between LVGLS and Min HR with r -	
T! (20)	0.419 and p-value of 0.002	89
Figure (38):	Showing positive linear correlation	
	between GLS and SDNN with r 0.415 and	0.0
T! (90)	p value of 0.003	90
Figure (39):	Showing positive linear correlation	
	between GLS and rMSSD with r 0.306	00
E' (40)	and p-value of 0.031	90
Figure (40):	Showing positive linear correlation	
	between GLS and LF with r 0.0350 and p-	01
T' (41)	value of 0.013	91
Figure (41):	Showing positive linear correlation	
	between GLS and LF/HF with r 0.309 and	01
	p-value of 0.029	91

Fig. No.	Title Page	No.
Figure (42):	SDNN in the study population	94
Figure (43):	Mean age in normal versus impaired	
	SDNN	
Figure (44):	Showing negative correlation between	
	SDNN and age with r -0.439 and p-value	
		95
Figure (45):	Percentage of normal and impaired SDNN	
T	in males versus females	
Figure (46):	Mean GLS in normal and impaired SDNN	
Figure (47):	GLS grading in normal versus impaired	
T! (40)	SDNN	
Figure (48):	Showing positive linear correlation	
	between SDNN and GLS with r 0.415 and	
T1 (40)	p value of 0.003	
Figure (49):	rMSSD among the study population	
Figure (50):	Prevalence of chest pain in relation to	
T! (F1)	rMSSD.	
Figure (51):	LF/HF ratio among the study population	
Figure (52):	Relation between age and LF/HF ratio	
T! (F0)	among the study population	
Figure (53):	Relation between DM and LF/HF ratio	
E' (F4)	among the study population	
Figure (54):	Showing negative linear correlation	
	between LF/HF and age with r -0.309 and	
T) (FF)	p-value 0.006	
Figure (55):	Showing positive linear correlation	
	between LF/HF and GLS with r 0.309 and	
	p-value 0.029	107

Tist of Abbreviations

Abb.	Full term
2D STE	Speckle tracking echocardiography
	Angiotensin converting enzyme
	Angiotensin converting enzyme 2
	Acute lung injury
	Angiotensin II
_	Autonomic nervous system
	Acute respiratory distress syndrome
	Area under curve
<i>BAME</i>	Black Asian and Minority Ethnic
	Cardiac magnetic resonance imaging
COVID-19	Coronavirus disease 2019
CV	Cardiovascular
DSN	Dysautonomia
<i>DSN</i>	Dysfunction or dysautonomia
DTI	Doppler tissue imaging
<i>EDD</i>	End-dia stolic dia meter
<i>EF</i>	$ Ejection\ fraction$
<i>ESD</i>	End-systolic diameter
<i>GLS</i>	Global longitudinal strain
<i>HF</i>	High-frequency component
HIV	Human immune deficiency virus
HRV	Heart rate variability
<i>HS</i>	Highly significant
<i>IQR</i>	Inter-quartile range
<i>LF</i>	Low frequency component
<i>LGE</i>	Late gadolinium enhancement
LV	Left ventricular
	Mitral Annular Plane Systolic Excursion
MCAS	Mast cell activation syndrome

Tist of Abbreviations (Cont...)

Abb.	Full term
MRI	Magnetic resonance imaging
<i>NIH</i>	National Institutes of Health
<i>NIV</i>	Non-invasive ventilation
<i>NS</i>	Nonsignificant
PC	Pro-inflammatory cytokines
POTS	Postural orthostatic tachycardia syndrome
<i>PSNS</i>	Parasympathetic nervous system
PW	Pulsed-wave
ROC	Receiver operating characteristic curve
ROI	Region-of-interest
S	. Significant
SDNN	. Standard deviation of N-N intervals
SEMA3	Class 3 semaphorin
<i>SNS</i>	. Sympathetic nervous system
SR	Strain rate
TDI	Tissue Doppler imaging

Introduction

Coronavirus disease 2019 (COVID-19), the viral illness caused by the novel coronavirus SARS-CoV-2 has resulted in significant morbidity and mortality across the world since the first cases were identified in Wuhan, China, in December 2019. Although most of the patients who had COVID-19 are asymptomatic or have mild to moderate disease, approximately 5% to 8% of the infected patients develop hypoxia, bilateral lung infiltrates, decreased lung compliance requiring non-invasive ventilation (NIV) or mechanical ventilatory support (*Halpin et al., 2021; Li and Ma, 2020*).

The previous epidemics of SARS-CoV and MERS-CoV left individuals who recovered from these viral illnesses with persistent symptoms of severe fatigue, decreased quality of life (QOL), persistent shortness of breath, and behavioral health problems that resulted in a significant burden on local healthcare systems where the epidemics occurred. Similarly, a variety of clinical symptoms termed post-acute COVID-19 syndrome has been described in a proportion of patients who recovered from COVID-19 despite biochemical evidence that the replication of SARS CoV 2 ceases to exist after four weeks after the initial infection (based on the sampling of viral isolates from the respiratory tract and not the nasopharyngeal/oropharyngeal specimen). The presence of lingering post COVID symptoms was evident even in absence of severe symptoms or hospitalization (*Chippa et al.*, 2022).

AIM OF THE WORK

o estimate the two-dimensional left ventricular global longitudinal strain (LVGLS) by speckle tracking echocardiography (2D STE) and heart rate variability (HRV) in post-COVID patients after mild to moderate acute SARS COV-2 infection.

Chapter 1

POST-ACUTE COVID 19 SYNDROME

1) Acute COVID-19 illness severity grading

Patients with SARS-CoV-2 infection can experience a range of clinical manifestations, from no symptoms to critical illness.

In general, adults with SARS-CoV-2 can be grouped into the following severity of illness categories.

<u>Asymptomatic or pre-symptomatic infection:</u>

Individuals who test positive for SARS-CoV-2 using a virologic test (i.e. nucleic acid amplification test or antigen test) but have no symptoms that are consistent with COVID-19.

Mild illness:

Individuals who have any of the various signs and symptoms of COVID-19 but who don't have shortness of breath, dyspnea or abnormal chest imaging.

Moderate illness:

Individuals who show evidence of lower respiratory disease during clinical assessment or imaging and have an oxygen > 94% on room air.