

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

The Effect of Hemodiafiltration Versus High Flux Dialysis on Free Light Chains Reduction and Its Relation to Albumin Loss

A Thesis

Submitted for partial fulfillment for

MD Degree in Internal Medicine

By

Reem Ahmed Sultan

M.B.B. Ch, MSc

Faculty of medicine-Ain shams University

Under supervision of

Prof. Hesham Mohamed ElSayed

Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Prof. Magdy Mohamed Elsharkawy

Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Prof. Waleed Anwar Abdelmohsen

Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Dr. Shaimaa Zaki Abdelmegied

Lecturer of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Dr. Ahmed Abdelmoneim Emara

Lecturer of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Cairo

2022

List of Contents

Title	Page No.
List of abbreviations	i
List of Tables	iv
List of Figures	vi
Introduction	1
Aim of the Work	4
Review of Litrature	
Chapter (1): Hemodialyzers	5
Chapter (2): Hemodiafiltration	24
Chapter (3): Free Light Chains As Uremic Toxin	45
Patients and Methods	67
Results	76
Discussion	96
Summary	106
Conclusion	110
Recommendation	111
References	112
Arabic Summary	1

List of abbreviations

Abbreviation	Meaning		
ADL	Activities of daily life		
ADMA	Asymmetric dimethylarginine		
AKI	Acute kidney injry		
B2M	Beta-2-microglobulin		
BTP	B-trace protein		
CKD	Chronic kidney disease		
CN	Cast Nephropathy		
CVD	Cardiovascular disease		
EBPG	European best practice guidelines		
ERI	ESA resistance index		
ESA	Erythropoiesis stimulating agents		
ESRD	End stage renal disease		
EUDIAL	European dialysis group		
FGF-23	Fibrolblast growth factor -23		
FLC	Free Light Chains		
GFR	Glomerular filtration rate		
НСО	High cut-off		
HD	Hemodialysis		
HDF	hemodiafiltration		
HDx	Expanded HD		
HF-HD	High flux hemodialysis		
HFR-SUPRA	Supra hemodiafiltration		

hsCRP	Highly sensitive CRP		
IgLCs	Immunoglobulin light chains		
Igs	immunoglobulins		
IL6	Interleukin-6		
IS	Indoxyl sulfate		
KoA	Mass transfer coefficient		
KUF	Ultrafiltration coefficient		
LCDD	Light chain deposition disease		
MCO	Middle cut-off		
MM	Multiple Myeloma		
MW	Molecular weight		
MWCO	Molecular weight cut off		
MWRO	Molecular weight retention onset		
OL-HDF	Online hemodiafiltration		
PCS	P-cresyl sulfate		
PD	Peritoneal dialysis		
PES	polyethersulfone		
pFLCs	Polyclonal free light chains		
Pi	Inorganic phosphorus		
PMMA	polymethylmethacrylate		
PTH	Parathyroid hormone		
Qb	Blood flow		
QOL	Quality of life		
RAAS	Renin angiotensin aldosterone system		
RCT	Randomized controlled trial		

RRT	Renal replacement therapy
SC	Sieving coefficient
TMP	Transmembrane pressure
UF	Ultrafiltration
VC	vasoconstriction

List of Tables

Table. No. Page No. Title **Tables of Review:** *Table 1: Comparison of cellulose-based membranes and synthetic polymer* Table 2:Summary of MWCO and pore size in different types of membranes. Table 4: Characteristics of dialysis membranes according to cutoff value. 18 Table 6:Principles of high-volume OL-HDF30 **Tables of Results:** Table 1:Demographic and different data in all patients included in the Table 2:Descriptive analysis of the studied cases according to different $HDF \ parameters \ (n = 25) \dots 79$ Table 3: Comparison between HD and HDF as regard serum albumin, predialysis, post-dialysis urea & trans-membrane pressure (TMP) 80 Table 4: Comparison between HD and HDF according to pre-dialysis Table 5: Comparison of high-flux pre-dialysis and corrected post-dialysis values of hsCRP, Kappa and Lambda, kappa/lambda ratio......82 Table 6: Comparison of HDF pre-dialysis and post-dialysis values of hsCRP, Kappa, Lambda and Kappa/lambda 84 *Table 7: Comparison between high flux HD and HDF as regard Reduction* ratio of hsCRP, Kappa, Lambda, post dialysis Kappa/Lambda and Urea Reduction Ratio. 86 Table 8: Fold change of Reduction ratio of Kappa, Lambda and Urea *Reduction Ratio by HDF using filter 2.6 m2 in comparison to high flux HD.*89 Table 9: Comparison between HD and HDF as regard total Albumin loss in dialysate in grams.......90

Table 10: Correlation between Albumin loss in dialysate (gm) and TMP in	n
high flux HD and HDF using filter 2.6 m2	92
Table 11: Correlation between Convection volume and RR in different	
parameters	95

List of Figures

Figure No.	Title	Page No.
Figures of Rev	<u>⁄iew</u> :	
Figure 1 :Pore siz	ge distribution curves (Fig. a–c) o	and the corresponding
sieving coefficien	t profiles (Fig. d)	
Figure 2:Modalit	ties of online hemodiafiltration	
Figure 3:Definiti	on of uremic toxins	46
Figure 4:Immuno	oglobulin and general structure o	of free light chains 48
Figure 5:Biologic	cal roles of pFLCs	50
levels for kappa (Figure (2): Figur dialysis levels for Figure 3:Compa (ng/ml) and lamb Figure 4: Compa	ts: rison between pre-dialysis and co (ng/ml) and lambda (ng/ml) in Ha re 2:Comparison between pre-dia r kappa (ng/ml) and lambda (ng/n rison between HD and HDF acc da (ng/ml) rison between HD and HDF acc	D
Figure 5 : Compar	rison between HD and HDF acco	ording to albumin loss in
•	ation between total loss albumin $DF(n = 25)$	•
	ation between total loss albumin $O(n = 25)$	

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Hesham Mohamed Elsayed**, Professor of Internal Medicine and Nephrology, Ain Shams University, and **Prof. Magdy Mohamed Elsharkawy**, Professor of Internal Medicine and Nephrology, Ain Shams University for their close supervision, valuable instructions, continuous help, patience, advices and guidance. They have generously devoted much of their time and effort for planning and supervision of this study. It was a great honor to me to work under their direct supervision.

I wish to express my great thanks and gratitude to **Prof. Walid Anwar Abdelmohsen,** Professor of Internal Medicine and Nephrology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr.** Shaimaa Zaki, Lecturer of Internal Medicine and Nephrology, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr. Ahmed Emara**, Lecturer of Internal Medicine and Nephrology,
Ain Shams University, for her kind supervision, indispensable
advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues,, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

Introduction

Uremic toxins are defined as molecules that accumulate in kidney impairment and have an adverse biologic effect. They can be broadly classified into three groups: small water-soluble molecule, middle molecule and protein-bound solutes (Wolley et al., 2018)

The primary goal of dialysis is solute removal. This capacity should be extended to include substances up to a molecular weight of 50 000 Da because this is the cut-off of the natural kidney (Maduell, 2018) to allow removal of large and middle sized molecules without albumin loss (66 kDa). (Wolley and Hutchison, 2018)

Immunoglobulin light chains (IgLCs) are classified as middle molecule uremic toxins together with beta 2-microglobulin (β 2m) and parathyroid hormone. They have a mean molecular weight of 25,000 daltons for monomers (kappa " κ " free light chains(FLCs)) and approximately 50,000 daltons for dimers (lambda " λ " free light chains) (**Donati et al., 2016**)

In pre-dialysis patients, polyclonal FLC (pFLC) increase exponentially as the glomerular filtration rate (GFR)

falls. In dialysis patients (CKD-5D) it gets higher levels up to 20–30 times the normal values and the classical dialyzers have difficulties in efficiently removing FLC. The effect of renal replacement therapy on the k/λ FLC ratio in dialysis patients free from multiple myeloma using new generations of dialysis membranes has not been clarified. (**Bourguignon et al., 2016**)

Most of hemodialysis (HD) techniques remove small water-soluble molecules. Exemplified by the use of urea clearance as a metric for dialysis dose and kinetic modeling and the difference between them returns to middle and large molecules removal. (Wolley and Hutchison, 2018)

Convective therapies and highly permeable membranes are known to remove medium – large molecular weight solutes up to 25KDa giving higher dialysis adequacy but associated with higher transmembrane albumin loss than the previously routinely used low flux-HD. (van Gelder et al., 2017)

Hemodiafiltration (HDF) has several clinical benefits. It reduces cardiovascular risk via removal of erythropoietic inhibitor and inflammatory substances also, it enhances

\bigcap	Inti	rod	ייר	ti.	٦n
-	11111	()(1	ш.	111)

hemodynamic stability and improves dialysis-related amyloidosis. (Maduell., 2018)

Newer 'medium cut-off' membranes have the potential to more effectively remove larger molecules up to 50 kDa, with limited albumin loss that improves dialysis outcome. (Wolley and Hutchison, 2018)

Aim of the Work

Primary end point: assessment of free light chains reduction and highly sensitive CRP (hsCRP) reduction in patients undergoing high flux dialysis (HF-HD) versus HDF.

Secondary end point: Assessment of cumulative albumin loss in patients undergoing high flux dialysis versus HDF and its correlation with convection volume.

Chapter (One)

Hemodialyzers

A dialyzer is a semipermeable membrane that separates blood and dialysate compartments, where it removes excess waste and water from the body by diffusion. it creates a counter current flow gradient where blood flow in one direction and the dialyzer dialysate is in the opposite direction. (Vadakedath & Kandi, 2017).

The role of the dialyzer is to act similarly to glomerulus to remove excess wastes and fluid from the blood; thus, it is often called an "artificial kidney"

The main aim of a dialysis filter is to better reproduce the physiological process of glomerular ultrafiltration. Dialysis membrane clearance, however, is based on concentration differences rather than the convective separation of solutes and low-molecular-weight proteins from large serum proteins and blood elements.(Santoro & Guadagni, 2010)