

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Assessment of the Serum Ischemia Modified Albumin Level and its Relation to Total Oxidant Status and Disease Activity in Vitiligo Patients

Thesis

Submitted for Fulfillment of Master Degree in Dermatology, Venereology and Andrology

Presented By

Nada Ahmed Abdo Elzainy

M.B.B.Ch.
Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Hanan Mohammed Saleh

Professor of Dermatology, Venereology and Andrology Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Marwa Yassin Soltan

Assistant Professor of Dermatology, Venereology and Andrology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2022

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Hanan**Mohammed Saleh, Professor of Dermatology,

Venereology and Andrology - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Marwa Yassin**Soltan, Assistant Professor of Dermatology,
Venereology and Andrology, Faculty of Medicine,
Ain Shams University, for his kind care,
continuous supervision, valuable instructions,
constant help and great assistance throughout
this work.

Nada Ahmed Abdo Elzainy

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
1. Introduction	1
2. Aim of the Work	3
3.1. Vitiligo	4
3.1.1. Prevalence:	4
3.1.2. Pathogenesis:	4
3.1.3. Clinical picture:	10
3.1.4. Diagnosis:	16
3.1.5. Histopathology and immuno-histochemistry:	17
3.1.6. Differential Diagnosis:	17
3.1.7. Investigations:	19
3.1.8. Vitiligo Assessment:	20
3.1.10. Treatment:	24
3.2. Oxidative Stress in Vitiligo	34
3.2.1. Oxidative stress role in pathogenesis of vitiligo	o: 34
3.2.2. Interlacement of oxidative stress with other etiopathogenesis of vitiligo:	35
3.2.3. Epidermal cells redox homeostasis:	36
3.2.4. Markers of oxidative stress in vitiligo:	37
3.3. Ischemia Modified Albumin (IMA)	43
3.3.1. What is IMA?	43
3.3.2. Clinical perspectives on IMA:	44

Tist of Contents cont...

Title	Page No.
3.3.3. IMA role in dermatology:	44
3.3.4. IMA in predicting oxidative stress in vitiligo:	45
3.3.5. Assessment of IMA level:	46
4. Patients and Methods	48
5. Results	59
6. Discussion	75
7. Summary	84
8. Conclusion and Recommendation	87
9. References	89
10. Arabic Summary	1

Tist of Tables

Table No.	Title	Page No.
Table 1:	Socio-demographic characteristic participants	•
Table 2:	The clinical characteristics of among the included patients	· ·
Table 3:	Comparison between control groups regarding TOS level and l	±
Table 4:	ROC curve for IMA and TOS lev of vitiligo disease.	
Table 5:	Comparison between active a cases according to IMA Level (n Level (µmol H2O2 Eq/L) in patien	g/ml) and TOS
Table 6:	Validity of IMA and TOS levels vitiligo activity	
Table 7:	Correlation between TOS Leve Eq/L) and IMA level (ng/ml) wi and VETI score among patient gr	th VIDA Score

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Focal vitiligo	13
Figure 2:	Mucosal vitiligo	
Figure 3:	Segmental vitiligo	
Figure 4:	Acrofacial Vitiligo	
Figure 5:	Vitiligo vulgaris	
Figure 6:	Universal vitiligo	15
Figure 7:	Wood's light examination showin lesions by Wood's light	
Figure 8:	Differential Diagnosis of Vitiligo .	18
Figure 9:	Guttate Leucoderma	19
Figure 10:	Rule of nines in burn assessment	23
Figure 11:	N-terminus binding site of album	in43
Figure 12:	Albumin-cobalt binding test	46
Figure 13:	Boxplot chart showing the sign levels of IMA levels in cases controls	compared to
Figure 14:	Boxplot chart showing the sign levels of TOS in cases compared t	ificantly high
Figure 15:	Receiver Operating Characteristi for TOS and IMA serum levels between cases and contols:	s differention
Figure 16:	A boxplot chart showing the ir levels in active cases compared cases.	
Figure 17:	A boxplot chart showing the ir levels in active cases compared cases.	to non-active

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 18:	Receiver Operating Characteris for TOS and IMA serum levels vitiligo patients and non-active	between active
Figure 19:	Scatter dot curve demonstration correlation between IMA and levels.	nd TOS serum
Figure 20:	Scatter dot curve demonstration between IMA serum le score.	evels and VIDA
Figure 21:	Scatter dot curve demonstration between TOS serum le score.	evels and VIDA

Tist of Abbreviations

Abb.	Full term
ABSU	Absorbanco units
	Albumin-cobalt binding
	Antinuclear antibodies
	Amelanotic with sharply demarcated borders
AUC	
	Basic fibroblast growth factor
BMI	
BSA	
CAT	
CD8+	
CoCl2	
DAMPs	Damage-associated molecular patterns
	Dihydroxyphenylalanine
DTT	
ELISA	Enzyme-Linked Immunosorbent Assay
ET-1	.Endothelial 1
FDA	Food and drug administration
GSH	
GSH-PX	Glutathione peroxidase
H2O2	
HMB-45	Human melanoma black-45
HPDB	Hypomelanotic with poorly defined borders
HS	Highly significant
IMA	Ischemia Modified Albumin
INF-γ	
	Inter-quartile range
	Monobenzylether of hydroquinone
MDA	
	Masson Fontana stain
	Major histocompatibility complex 2
	Non cultured epidermal suspension
NO	
NPs	
NPV	Negative predictive value

Tist of Abbreviations cont...

Abb.	Full term
NDV	Noura pantida V
NPY	
NS	
	Non segmental vitiligo
O.D	
O2	
OMP	
	Positive predictive value
	Polyunsaturated fatty acid
	Psoralen plus UVA
	Quality of life assessment
ROC	Receiver operating characteristic curve
ROS	Reactive oxygen species
S	Significant
SCF	Stem cell factor
SNPs	Single nucleotide polymorphisms
SOD	Super-oxide dismutase
	Statistical Package for Social Science
	Total antioxidant status
	Topical calcineurin inhibitors
TLR	
	Total Oxidant Status
	Regulatory T cells
•	Vitiligo Area Scoring Index
	Vitiligo European Task Force Assessment
	Vitiligo Extent Tensity Index
	Vitiligo Disease Activity Score
VIDA DUUIC	viningo Disease Activity Store

1. Introduction

itiligo is an acquired depigmentary skin disorder by loss of functioning epidermal melanocytes. It occurs worldwide. Both genders and all races are affected (Bergqvist et al., 2020).

The etiopathogenesis of vitiligo is complex and unclear. Several etiological factors have been suggested such as autoimmune mechanism, genetic and environmental factors (Furue et al., 2016).

Among the etiological factors, oxidative stress can directly disturb melanin metabolism and undermine melanocyte survival through excessive accumulation of cytotoxic hydrogen peroxide. Oxidative stress may play an essential role in activating subsequent autoimmune responses related to vitiligo (Xie et al., 2015).

Reactive oxygen species (ROS) which are induced by multifactorial process and in conjunction with the impaired antioxidant defenses, lead to the loss of melanocyte redox homeostasis, and therefore, the stressed melanocytes generate damage-associated molecular patterns (DAMPs) or auto-antigens then initiate innate immunity and adaptive immunity, leading to the dysfunction and death of melanocytes (Wang et al., 2019).

High levels of reactive oxidative species (ROS) are observed in patients with active vitiligo, this is probably correlated with increased intracellular ROS production in the tissue of these patients

(Ines et al., 2009). Akoglu et al. (2013) found that total oxidant status serum levels (TOS) were higher and total antioxidant status serum levels (TAS) were lower in patients with vitiligo than in controls.

Ischemia-modified albumin (IMA) is a new biomarker for ischemia (Hatice et al., 2017). As in ischemic status, albumin loses binding capacity and the ability of transition metals on the N-terminal ends. A high level of IMA is also detected in diseases related to oxidative stress, such as psoriasis, vascular injury of diabetes mellitus, multiple sclerosis, some cancers, acute appendicitis, polycystic ovary syndrome and β-thalassemia major (Ahmad et al., 2016).

Ischemia-modified albumin (IMA) has been described as a biomarker of oxidative stress and extensively investigated recently (Shevtsova et al., 2021). Ozdemir et al. (2012) noted that IMA could be produced as an adaptive response to chronic hypoxia and oxidative stress. It has been shown that IMA had a strong predictive power, the sensitivity, specificity, capacity, and positive and negative predictive values of IMA were detected to be higher than other studied biomarkers of oxidative stress (Ataş et al., 2017).

In the view that oxidative stress has been linked to vitiligo pathogenesis and disease activity, IMA was detected to be higher in patients with vitiligo, we thought to investigate the serum level of IMA in vitiligo patients and its possible relation to TOS levels and disease activity.

2. AIM OF THE WORK

The aim of this work was to evaluate the serum level of ischemia modified albumin in vitiligo patients and its relation to total oxidant status and disease activity.

🥏 Vitiligo	Review of Titerature _

Chapter 1

3.1. VITILIGO

Titiligo is a chronic acquired disease characterized by appearance of circumscribed achromatic macules to patches often associated with leukotrachia in various parts of body, due to progressive destruction and reduction in numbers of melanocytes (*Varzhapetyan et al., 2019*).

3.1.1. Prevalence:

The prevalence of vitiligo worldwide ranges from 0.5% to 2% of general population without clear preference for race or sex, although women may be more likely to present for treatment because of cosmetic reasons and respond to surveys (*Bergqvist et al.*, 2020).

3.1.2. Pathogenesis:

3.1.8.1. **Genetic:**

Various studies have found that the frequency of vitiligo among 1st degree relatives varies from 0.14% to as high as 20%, this suggests strong familial tendency (*Alkhateeb et al.*, 2003).

Vitiligo is a poly-genetic disorder. A large scale genome studies have discovered approximately 50 different genetic loci that contribute to vitiligo risk, a large fraction of these genes encode proteins involved in immune regulation, cellular apoptosis and regulation functions of melanocytes (*Spritz et al.*, 2017).