

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Assessment of Thyroid Functions in Late Preterm Infants of Mothers on Antenatal Steroids

AThesis

Submitted for partial fulfillment of Master degree in Pediatrics

By

Basma Bassam Hassan

M.B., B.Ch (Ain Shams University 2012)

Under Supervision of

Prof. Dr. Rasha Tarif Hamza

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Prof. Dr. Amira Ibrahim Hamed

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Dr. Wafaa Osman Ahmed

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2022

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work,

My deepest gratitude to **Prof. Dr. Rasha Tarif Hamza**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her valuable guidance and expert supervision, in addition to her great deal of support and encouragement. I really have the honor to complete this work under her supervision.

I would like to express my great and deep appreciation and thanks to **Prof. Dr. Amira Ibrahim Hamed,** Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, and her patience in reviewing and correcting this work.

I must express my deepest thanks to **Dr. Wafaa Osman Ahmed,** Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for guiding me throughout this work and for granting me much of her time. I greatly appreciate her efforts.

Special thanks to my **Parents**, my **Husband** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

🖎 Basma Bassam Bassam Hassan

List of Contents

Subject Page I	Vo.
List of Abbreviations	i
List of Tables	. iii
List of Figures	. iv
Introduction	1
Aim of the Work	3
Review of Literature	
Antenatal Corticosteroids	4
Prematurity and late preterm infants	15
Thyroid function in fetus and preterm infants	24
Patients and Methods	41
Results	47
Discussion	69
Summary	80
Conclusions and Recommendations	83
References	85
Arabic Summary	.—

List of Abbreviations

Abbr. Full-term

ACOG : American College of Obstetricians and Gynecologists

ACS : Antenatal corticosteroids

ACTH : Adrenocorticotropic hormone

ANS : Antenatal steroids

BMR : Basal metabolic rate

CRH : Corticotropin-releasing hormone

CS: Caesarean section

D1 : Iodithyronine deiodinase

D2 : Type 2 deiodinase

DI3 : Monoamine deiodinase, type 3

DM : Diabetes mellitus

DUE : Dehydro-epiandrosterone

ELISA : Enzyme linked immune sorbent assay

GR : Glucocorticoid receptors

HTN: Hypertension

IGF : Insulin-like growth factors

IVH : Intraventricular hemorrhage

LMP : Last menstrual period

NIH : National Institute of Health

NSAIDS : Non-steroidal anti-inflammatory drugs

NTIS : Non-thyroidal illness syndrome

NVD : Normal vaginal delivery

PROM: Premature rupture of membranes

RDS : Respiratory distress syndrome

SD : Standard deviation

SGA : Small for gestational age

SMFM : Society for Maternal Fetal Medicine

SPSS: statistical analyses were performed using

TBG: Thyroxine-binding globulin

TG: Thyroglobulin

TRH : TSH releasing hormone

TSH: Thyroid stimulating hormone

WHO: World Health Organization

List of Tables

Table No	. Title Page	Page No.	
Table (1):	Clinical practice considerations for administration of antenatal corticosteroids for late-preterm and early term pregnancies.	10	
Table (2):	Late-preterm infants and the most frequent complications of prematurity during the birth hospitalization	18	
Table (3):	Physiological and biochemical actions of thyroid hormone	33	
Table (4):	Morphological and biochemical responses to thyroid hormone during amphibian metamorphosis	35	
Table (5):	Maternal History	49	
Table (6):	Neonatal Demographics	52	
Table (7):	Neonatal clinical Outcomes	55	
Table (8):	Thyroid profile	58	
Table (9):	Complete Blood Count	60	
Table (10):	Arterial Blood gases	62	
Table (11):	Hematological findings	64	
Table (12):	Binary logistic regression for prediction of serum TSH >6 MIU/L	67	
Table (13):	Binary logistic regression for prediction of serum levothyroxine administration	68	

List of Figures

Figure No	o. Title	Page No.
Figure (1):	Antenatal corticosteroids (ACS)	5
Figure (2):	Approximate timeline of thyroid g maturation in the human fetus	
Figure (3):	Changes in serum TSH, T4, and following birth in term as compare preterm newborn infants	ed to
Figure (4):	Normal ranges of thyroid function in premature infants	
Figure (5):	Matemal-placental-fetal endo interaction.	
Figure (6):	Rat thyroid total (A), protein-b (B), and free (C) concentration iodine during acute stress and stress periods	n of post-
Figure (7):	Obstetric history	50
Figure (8):	Maternal history	50
Figure (9):	Distribution of neonatal sex and among the study groups	
Figure (10):	Mean birth weight distribution are the study groups	_
Figure (11):	Neonatal clinical outcomes	56
Figure (12):	Neonatal free T4 among the stugroups	
Figure (13):	Neonatal free T3 among the stugroups	

Figure (14):	Neonatal serum TSH among the studied groups					
Figure (15):		_			ng the	61
Figure (16):			U		studied	62
Figure (17):			U		studied	63
Figure (18):			_		studied	65
Figure (19):	Neonatal	PTT	among	the		

ABSTRACT

Background: Antenatal steroids (ANS) are used widely for women at risk of preterm delivery. Evidence on the effects of ANS on thyroid hormone function in preterm infants is limited. There is no evidence on comparative effects of no ANS, one dose of ANS (partial), or two doses of ANS (complete) on thyroid hormone function among preterm infants.

Aim of the study: To study the effect of antenatal steroids on thyroid functions in late preterm infants on third to seventh day of life.

Patients and Methods: Comparative Cross-Sectional study was conducted on 90 neonates admitted in NICU in the first week of life. They were divided according to exposure to antenatal steroids to three groups. First group: exposed to complete course of ANS. Second group: exposed to partial course of ANS. Third group: not exposed to ANS.

Results: The study showed that there was significantly higher serum T4 levels in group A (who exposed to complete course) compared to group B (partial course) and C (Third group). While, there were no significant differences in serum TSH, T3 levels between groups.

Conclusion: Antenatal corticosteroids can influence thyroid function in late preterm infants as serum T4 was significantly higher in infants exposed to complete course compared to those who were exposed to partial course or did not receive antenatal corticosteroids.

Keywords: antenatal steroids, thyroid function, preterm

Introduction

Preterm infants have an increased incidence of complications and mortality roughly proportional to the degree of prematurity. Infants born >34 weeks and <37 weeks are considered late preterm, infants born >32 weeks and < 34 weeks are considered moderate preterm, infants born >28 weeks and < 32 weeks are considered very preterm. Infants born < 28 weeks are considered extremely preterm (**Shapiro-Mendoza and Lackritz, 2012**).

The use of antenatal steroids (ANS) has been associated with reductions in serious adverse outcomes of prematurity (Roberts et al., 2017).

The administration of ANS is very effective intervention in improving neonatal respiratory outcome after preterm birth (**Travers et al., 2017**). The beneficial effect of ANS is dosedependent, with maximal benefit associated with a complete course of ANS (**Chawla et al., 2016**).

Thyroid hormone is essential for the regulation of intrauterine homeostasis, and for the timely differentiation and maturation of fetal organs. These hormones play complex roles during fetal life. They serve to modulate the functional adaptation for extra uterine life during the perinatal period. Abnormalities of thyroid gland function result not only in the metabolic consequences of thyroid dysfunction, but in unique effects on the growth and maturation of these thyroid hormone-dependent tissues (*Chung*, 2014).

Postnatal thyroid function of preterm infants differs from that of term Infants. Thyroid dysfunction is common among premature Infants (**Kaluarachchi et al., 2017**). The dramatic rise in serum TSH 30 to 60 minutes following delivery is reduced in preterm infants as compared to term infants, generally in proportion to their degree of prematurity (**Murphy et al., 2004**).

After birth, neonate must rapidly convert from the fetal state of predominant thyroid hormone inactivation to a state of relative hyperactivity; this is initiated by abrupt increase in hypothalamic TSH releasing hormones (TRH) and pituitary TSH secretion. The cold-stimulated TRH-TSH surge is short lived and peaks at 30 minutes, with peak concentration as high as 60-70 mu/1, after that serum TSH concentration progressively decrease to normal infant level by 3 to 5 days, while serum free **T4** levels remain elevated for several weeks (*Brown*, *2012*).

Many factors affecting thyroid function as gestational age, gender, mode of delivery, birth weight, birth order, Apgar score at 5 minutes, the development of respiratory distress syndrome (RDS) requiring surfactant supplementation, history of surgical procedures which needed antiseptics containing iodine, antenatal administration of dexamethasone, cold exposure, use of morphine, dobutamine or dopamine on the day which thyroid function test was performed and nutritional status from the until tolerable feeding (*Chung et al., 2009*).

Aim of the Work

To study the effect of antenatal steroids on thyroid functions in late preterm infants on third to seventh day of life.

Antenatal Corticosteroids

Administration of maternal antenatal corticosteroids (ACS) is a well-adopted practice for preterm pregnancies death, neonatal death, RDS, and intra ventricular hemorrhage (IVH) (Mc Goldrick et al., 2020).

Type and dose of antenatal corticosteroids

Two types of corticosteroids are used antenatal to facilitate lung maturation: betamethasone and dexamethasone. The cellular mechanisms of corticosteroids in facilitating lung maturation involve the induction of pulmonary beta-adrenergic receptors, acceleration of the development of type 1 and 2 pneumocystis, and up regulation of gene expression for the epithelial Na+ channel. This leads to increased surfactant production and excretion which allows for improvement in gas exchange and lung mechanics, and increased absorption of alveolar fluid prior to delivery (**Htun et al., 2021**).