

بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

NA		T R	ملاحظات:
4 1	6997		
	AIMSWAM	R. CIVILLE HARINA	
1	5/15/20	1992	- 1 3 m. f

بمكات وتكنولوجبارته

التنميط الكيميائي و تقييم النشاط الواقي من الاشعاع لأوراق نبات الاستيفيا المزروعة في مصر

رسالة مقدمة إلى كلية الصيدلة – جامعة عين شمس الاستكمال متطلبات الحصول على درجة الماجيستير في العلوم الصيدلية (عقاقير)

شيرين حمدى عبدالله بخيت

باحث بالمركز القومي لبحوث و تكنولوجيا الإشعاع بكالوريوس في العلوم الصيدلية كلية الصيدلة _ جامعة عين شمس-2005

تحت إُشراف

ا.د./ عبد الناصر بدوى سنجاب

أستاذ العقاقير كلية الصيدلة – جامعة عين شمس رئيس مجلس إدارة مركز أبحاث إكتشاف الدواء وتطويره – جامعة عين شمس

ا.د/ أحمد شفيق ندا

أستاذ الفسيولوجي

المركز القومي لبحوث وتكنولوجيا الإشعاع - هيئة الطاقة الذرية

ا.م.د./ندی محمد محمود محمد محمود

أستاذ مساعد العقاقير كلية الصيدلة - جامعة عين شمس

قسم العقاقير كلية الصيدلة – جامعة عين شمس العباسية – القاهرة جمهورية مصر العربية 2022

Chemical Profiling and Radioprotective Activity Evaluation of *Stevia* Leaves Cultivated in Egypt

A Thesis Submitted to Faculty of Pharmacy – Ain Shams University
In Partial Fulfillment of the Requirements
For the Degree of Master in Pharmaceutical Sciences (Pharmacognosy)
By

Sherien Hamdy Abdallah Bekhiet

Researcher at National Centre for Radiation Research and Technology Bachelor of Pharmaceutical Sciences, Faculty of Pharmacy, Ain Shams University, 2005

Under the Supervision of

Abdel-Nasser Badawy Singab, Ph. D.

Professor of Pharmacognosy Faculty of Pharmacy, Ain Shams University Chairman of Center of Drug Discovery Research and Development

Ahmed Shafiq Nada, Ph.D.

Professor of Physiology
National Centre for Radiation Research and Technology
Atomic Energy Authourity

Nada Mohamed Mahmoud Mohamed Mostafa, Ph.D

Associate Professor of Pharmacognosy Faculty of Pharmacy Ain Shams University

> Department of Pharmacognosy Faculty of Pharmacy Ain Shams University Abbasia, Cairo, Egypt 2022

Acknowledgements

Above all, I am extremely thankful to Almighty ALLAH for giving me strength, courage, perseverance and wisdom to accomplish the assigned task.

It is my pleasure to express my gratitude to the people without whom this thesis would not be possible.

I wish to express my deep appreciation and profound gratitude to **Prof. Abdel**Nasser B. Singab, Professor of Pharmacognosy, Faculty of Pharmacy, Ain
Shams University, for his scientific merit, helpful suggestions and
encouragement throughout this work. His kind supervision and constant
guidance have served much in the construction of this work. Thanks for his
precious time, and his support.

I would like to express my deep thanks and grateful appreciation to **Prof. Ahmed**S. Nada, Professor of Physiology, National Centre for Radiation Research and
Technology, Atomic Energy Authority, to whom I owe more than words can
express. I would like to thank him for suggesting the research point. His limitless
help, valuable advice and kind encouragement are beyond acknowledgment.

I owe special gratefulness and much regards to Dr. Nada M. Mostafa, Associate Professor of Pharmaconosy, Faculty of Pharmacy, Ain Shams University for her active guidance and continuous encouragement. Her never fading patience and outstanding enthusiasm have been of great support throughout this work. Thanks for her precious time, valuable advice and constructive comments.

I am also indebted to **Dr. Marwa Abdelhameed** Associate Professor of Biochemistry, and **Dr. Reham Soliman**, Associate Professor of Pharmacology, National Centre for Radiation Research and Technology, Atomic Energy Authority, for hosting the biological studies and their efforts during writing of the thesis. They provided me with the best knowledge and facilities without which I would never be able to complete this work. Besides, they put me on the track and benefited my whole career in a sense I will never forget.

Special thanks and deep appreciation for **Dr. Ahmed Essam** Lecturer of Pharmacogmosy, Faculty of Pharmacy, Ain Shams University for his contribution and valuable efforts in isolation of phytoconsituents and NMR analysis.

A special debt of gratitude, cordial appreciation and deep thanks to my colleagues for their cooperation and support.

I would also like to record my thanks and sincere gratitude to my dearest great parents whom I really love and respect. No words can fully encompass the love, support they have given me my entire life. God bless them for me.

Finally, I would like to thank my dear husband, for his continuous help, encouragement, close support and patience for which I am grateful. My daughters, Farida and Sulaf whom I hope will always be proud of me.

Sherien Hamdy Abdallah 2022

Table of content

Content Page	
Acknowledgmenti	
Table of contentiii	
List of abbreviations v	
List of figures vii	i
List of photos x	
List of tablesxi	
1-Introduction	1
2-Review of Literature	
I. Chemical review genus <i>Stevia</i>	3
II. Biological review of genus <i>Stevia</i> 24	4
III. Folk medicine4	1
IV. Radiation induced toxicity4	4
3-Taxonomy4	7
4-Material, Apparatus and Methods	
I. Material	
1. Plant material5	51
2. Material for phytochemical investigation of <i>S. rebaudiana</i> leaves5	51
3. Material for biological investigation of hepatoprotective activity against radiati	ion
induced toxicity5	52
II. Apparatus5	57
III. Methods	
1. Methods for phytochemical investigation of <i>S. rebaudiana</i> leaves5	58
2. Methods for biological investigation of hepatoprotective activity against	st
radiation induced toxicity6	51

4. Results

	I. Phyt	ochemical Investigation of <i>Stevia rebaudiana</i> leaves	74
	1.	Extraction of S. rebaudiana leaves	74
	2.	Fractionation of methanol plant extract using different solvents	74
	3.	Standardization of stevioside content in S. rebaudiana leaves using	
		HPLC	74
	4.	Determination of total flavonoids and total phenolic content	76
	5.	Nutritional content in Stevia rebaudiana	
	_	leaves	
		LC-ESI-MS/MS profiling of TEx and BF of <i>S. rebaudiana</i> leaves	
	7.	Isolation of phytoconstituents from BF of <i>S. rebaudiana</i> leaves	89
		ological investigation of the radioprotective effects of total methanol extract, loside, and butanol fraction of <i>S. rebaudiana</i> leaves	95
		Relative liver weight	
		Serum Alanine Aminotransferase (ALT) and Aspartate Aminotransferase	
	۷.	(AST)	96
	3.	Antioxidants markers in liver tissue	
	4.	Oxidative stress marker	102
	5.	Inflammatory markers	104
	6.	Histopathological examination	108
	7.	Trace elements estimation in liver tissues	110
5.	Discus	ssion	113
G	eneral s	ummary	118
Co	onclusio	on and Recommendations	121
Re	eference	es	122
Aı	rabic su	ımmary	.149

List of abbreviations

Ab	Absorbance
ALT	Alanine transaminase
APP	4-aminophenazone
APT	Attached Proton Test
AST	Aspartate aminotransferase
CDNB	1- chloro- 2,4-dinitrobenzene
COX-2	Cyclooxygenase 2 enzyme
DAB	Diaminobenzidine
DHBS	3,5-Dichloro -2- hydroxyl benzene sulfonic acid
DTNB	2-nitrobenzoic acid
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
ESI	Electron Spray Ionization
g/l	Gram / liter
GC-MS	Gas Chromatography / Mass Spectrometry
GSH	Glutathione Reduced
GST	Glutathione S Transferase
Gy	Gray
HF	Hexane Fraction
HRP	Horseradish Peroxidase
IU/ml	International unit per milliliter
LC-MS	Liquid Chromatography / Mass Spectrometry
MDA	Malondialdehyde

mol/l	Mole/ liter
mmol/l	Millimole / liter
NaOH	Sodium hydroxide
NF-κB	Nuclear factor kappa B
nm	Nanometer
ODS	Octadecylsilanized
ppm	Part Per Million
Rad	Radiation
TBA	Thiobarbituric Acid
TBS	Tris buffered saline
TCA	Trichloroacetic acid
TNF-α	Tumor necrosis factor - alpha

List of Figures

Figure No.	Figure Title	Page No.
1	Direct and indirect mechanism of radiation induced toxicity	46
2	ALT standard calibration curve	64
3	AST standard calibration curve	65
4	HPLC chromatogram of standard stevioside (6mg/ml)	74
5	Stevioside standard calibration curve	75
6	HPLC chromatogram of butanol fraction of Stevia leaves	75
7	Rutin standard calibration curve	76
8	Gallic acid standard calibration curve	77
9	Positive ionization mode LC-ESI-MS chromatogram of TEx of <i>S. rebaudiana</i> leaves	81
10	Negative ionization mode LC-ESI-MS chromatogram of TEx of <i>S. rebaudiana</i> leaves	81
11	Positive ionization mode LC-ESI-MS chromatogram of BF of <i>S. rebaudiana</i> leaves	84
12	Negative ionization mode LC-ESI-MS chromatogram of BF of <i>S. rebaudiana</i> leaves	84
13	Chemical structures of major compounds identified in TEx and BF of <i>S. rebaudiana</i> leaves	87
14	Chemical structures of major compounds identified in TEx and BF of <i>S. rebaudiana</i> leaves	88

Figure No.	Figure Title	Page No.
15	ESI-MS spectrum of compound 1	90
16	¹ H-NMR spectrum of compound 1	91
17	APT spectrum of compound 1	92
18	LC/ESI-MS/MS spectrum of Rebaudioside A (compound 2)	93
19	LC/ESI-MS/MS spectrum of Rebaudioside C (compound 3)	94
20	LC/ESI-MS/MS spectrum of 3,4 dicaffouylquinic acid (compound 4)	94
21	The effect of total extract (TEx), stevioside (St) and butanol fraction (BF) on relative liver weight of irradiated rats	96
22	The effect of total extract (TEx), stevioside (St) and butanol fraction (BF) on serum alanine transaminase ALT of irradiated rats	98
23	The effect of total extract (TEx), stevioside (St) and butanol fraction (BF) on serum aspartate transaminase AST of irradiated rats	98
24	The effect of total extract (TEx), stevioside (St) and butanol fraction (BF) on catalase enzyme activity in liver tissue of irradiated rats	101
25	The effect of total extract (TEx), stevioside (St) and butanol fraction (BF) on reduced glutathione (GSH) concentration in liver tissue of irradiated rats	101
26	The effect of total extract (TEx), stevioside (St) and butanol fraction (BF) on glutathione S transferase (GST) activity in liver tissue of irradiated rats	102

Figure No.	Figure Title	Page No.
27	The effect of total extract (TEx), stevioside (St) and butanol fraction (BF) on lipid peroxide (MDA) level in liver tissue of irradiated rats	104
28	The effect of total extract (TEx), stevioside (St) and butanol fraction (BF) on tumor necrosis factor alpha (TNF-α) concentration in liver tissue of irradiated rats	106
29	The effect of total extract (TEx), stevioside(St) and butanol fraction (BF) on expression of nuclear factor kappa B (NF-κB) in liver tissue of irradiated rats	107
30	The effect of total extract (TEx), stevioside(St) and butanol fraction (BF) on expression of cyclooxygenase 2 (Cox-2) in liver tissue of irradiated rats	107
31	Representative photomicrographs of hematoxylin and eosin- stained liver tissue sections	109
32	The effect of total extract (TEx), stevioside (St) and butanol fraction (BF) on iron content in liver tissue of irradiated rats	111
33	The effect of total extract (TEx), stevioside (St) and butanol fraction (BF) on calcium content in liver tissue of irradiated rats	111
34	The effect of total extract (TEx), stevioside (St) and butanol fraction (BF) on copper content in liver tissue of irradiated rats	112

List of Photos

Photo No.	Photo Title	Page No.
1	Photo of cultivation of Stevia rebaudiana	49
2	Photo of stem bearing leaves of Stevia rebaudiana	49
3	Photo of flowers of Stevia rebaudiana	50
4	Photo of seeds of Stevia rebaudiana	50

List of Tables

Table No.	Table Title	Page No.
1	Chemical structures of isolated diterpenes and triterpenes from genus <i>Stevia</i>	4
2	Chemical structures of isolated sesquiterepenes from genus Stevia	9
3	Chemical structures of isolated sesquiterepenes lactones from genus <i>Stevia</i>	10
4	Chemical structures of isolated longipinenes from genus Stevia	15
5	Chemical structures of isolated flavonoids and its glycosides from genus <i>Stevia</i>	18
6	Chemical structures of isolated sterols and steryl glycosides from genus <i>Stevia</i>	21
7	Chemical structures of isolated iminosugars and iminosugar amino acids from genus <i>Stevia</i>	23
8	Isolated sesquiterpene lactones from <i>Stevia</i> species and their reported biological activities	32
9	Isolated diterpenes from <i>Stevia</i> species and their reported biological activities	34
10	Isolated flavonoids from <i>Stevia</i> species and their reported biological activities	34
11	Isolated iminosugars from <i>Stevia</i> species and their reported biological activities	40
12	Ethnobotanical uses of Stevia species	41
13	Concentration scheme of ALT assay reagents	53
14	Concentration scheme of AST assay reagents	53

Table No.	Table Title	Page No.
15	Concentration scheme of GSH assay reagents	54
16	Concentration scheme of GST assay reagents	54
17	Concentration scheme of Catalase enzyme assay reagents	55
18	Concentration scheme of MDA assay reagents	55
19	TNF-α ELISA kit assay content	56
20	Concentration scheme of total protein assay reagents	56
21	Total flavonoids and phenolic contents in TEx and BF of <i>S. rebaudiana</i> leaves	78
22	Trace elements content in S. rebaudiana leaves	78
23	Identification of compounds in total methanol extract of <i>S. rebaudiana</i> leaves using LC-ESI-MS/MS	82
24	Identification of compounds in butanol fraction of <i>S. rebaudiana</i> leaves using LC-ESI-MS/MS	85
25	The effect of total extract (TEx), stevioside (St) and butanol fraction (BF) on relative liver weight of irradiated rats	95
26	The effect of total extract (TEx), stevioside (St) and butanol fraction (BF) on serum liver enzymes of irradiated rats	97
27	The effect of total extract (TEx), stevioside (St) and butanol fraction (BF) on oxidative stress markers in liver tissue of irradiated rats	100
28	The effect of total extract (TEx), stevioside (St) and butanol fraction (BF) on lipid peroxide (MDA) level in liver tissue of irradiated rats	103