

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

كليه العلوم – قسم الكيمياء

Development of Novel Solar Light-Activated Photocatalysts for Clean Energy Production and Degradation of Emerging Contaminants

Thesis Submitted by

Tamer Mahmoud Ahmed Mahmoud Khedr

B.Sc. (Chemistry) 2008 M.Sc. (Chemistry) 2015

For the requirement of Ph.D. Degree of Science in Chemistry

Under the supervision of

Ass. Prof. Dr. Hany Mohamed Abdeldayem

Ass. Professor of Physical Chemistry, Chemistry Department, Faculty of Science, Ain Shams University, Egypt

Prof. Dr. Said Moawad El Sheikh

Professor of Nanotechnology, Nanomaterials and Nanotechnology department, Advanced Materials Institute, Central Metallurgical Research and Development Institute (CMRDI), Egypt

Ass. Prof. Dr. Ewa Kowalska

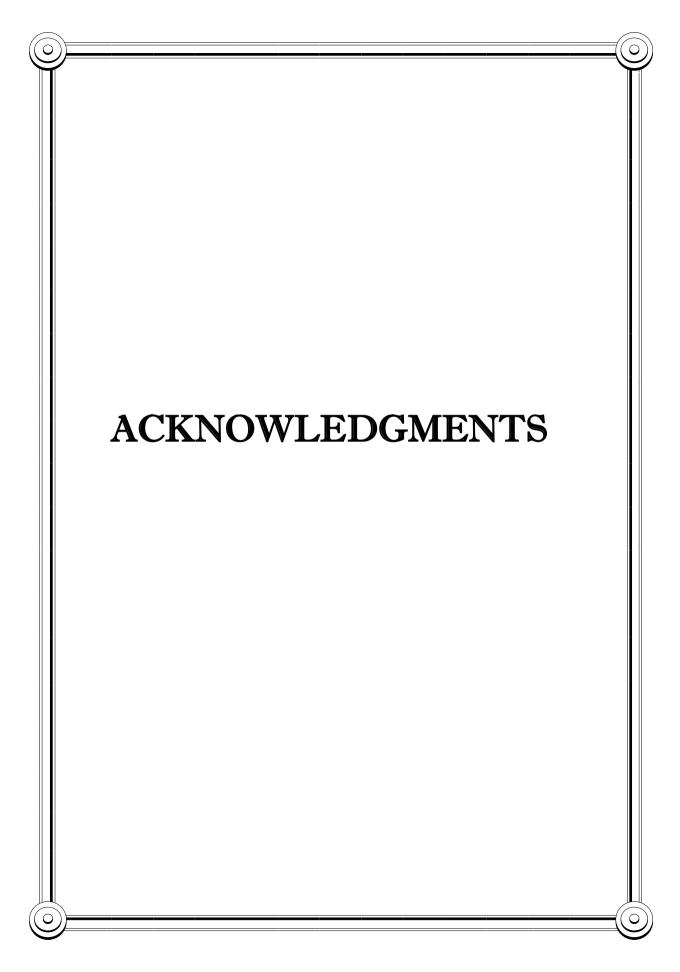
Ass. Professor of Photocatalysis, Photocatalysis Department, Institute for Catalysis (ICAT), Hokkaido University, Japan

To

Department of Chemistry Faculty of Science Ain Shams University

كليه العلوم – قسم الكيمياء

Development of Novel Solar Light-Activated Photocatalysts for Clean Energy Production and Degradation of Emerging Contaminants


Tamer Mahmoud Ahmed Mahmoud Khedr

Assistant Lecturer, Nanomaterials and Nanotechnology
Department, Advanced Materials Institute, Central Metallurgical
Research and Development Institute (CMRDI)

Thesis Advisors	Thesis Approved
Ass. Prof. Hany Mohamed Abdeldayem	•••••
Ass. Professor of Physical Chemistry, Chemistr Faculty of Science, Ain Shams University, Egyp	· 1
Prof. Said Moawad El Sheikh	•••••
Professor of Nanotechnology, Nanomateria Department, Advanced Materials Institute, Research and Development Institute (CMRDI),	Central Metallurgical
Ass. Prof. Ewa Kowalska	
Ass. Professor of Photocatalysis, Photocataly for Catalysis (ICAT), Hokkaido University, Jap	•

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

ACKNOWLEDGMENTS

Firstly, and foremost, I'd like to thank **ALLAH** for blessing me with this opportunity, giving me the strength to overcome difficulty and who granted me the power to finish this work.

The achievement of this work would not have been possible without support by many persons to whom I want to express my deepest gratitude.

To begin with, I am very grateful to my supervisor **Ass. Prof. Dr. Hany Mohamed Abdeldayem (Chemistry Department, Faculty of Science, Ain Shams University**) for the guidance, trust and scientific freedom he provided.
Our discussions and his advice, motivation and immense knowledge have been enriching. His aspiration and persistence made me develop new skills and competencies. His guidance had helped me to complete my research and the writing of this thesis.

My deepest indebtedness, respect and great appreciation for **Prof. Dr. Said Moawad El Sheikh (Nanomaterials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical Research and Development Institute)** for their valuable discussion, continuous support, great encouragement, precious advice and sincere suggestions throughout the development of this work. His supervision and discussions had helped me to develop and finish my research and the writing of this thesis.

Deepest grateful acknowledgments to Ass. Prof. Dr. Ewa Kowalska (Photocatalysis Department, Institute for Catalysis (ICAT), Hokkaido University, Japan) for her valuable guidance, support and continuous help during my scholarship in Japan. Her discussion and great guidance had assisted me to develop and complete my work.

Acknowledgments

I would like to convey my sincere gratitude to the Central Department

of Missions, Cultural Affairs and Missions Sector, Ministry of Higher

Education of Egypt for giving me the opportunity and financial support to

further this research work at Institute for Catalysis (ICAT), Hokkaido

University, Japan. I will evermore be indebted for their support.

I also thank my fellow colleagues in the Central Metallurgical Research

and Development Institute (specifically the members of the Nanomaterials

and Nanotechnology Department), and Institute for Catalysis, Hokkaido

University, Japan (specifically the members of the Ohtani & Ewa research

group) for all the scientific discussions in our weekly seminars, nice

conversations and the fun time in the office, and for providing the necessary

facilities to carry out my research work successfully.

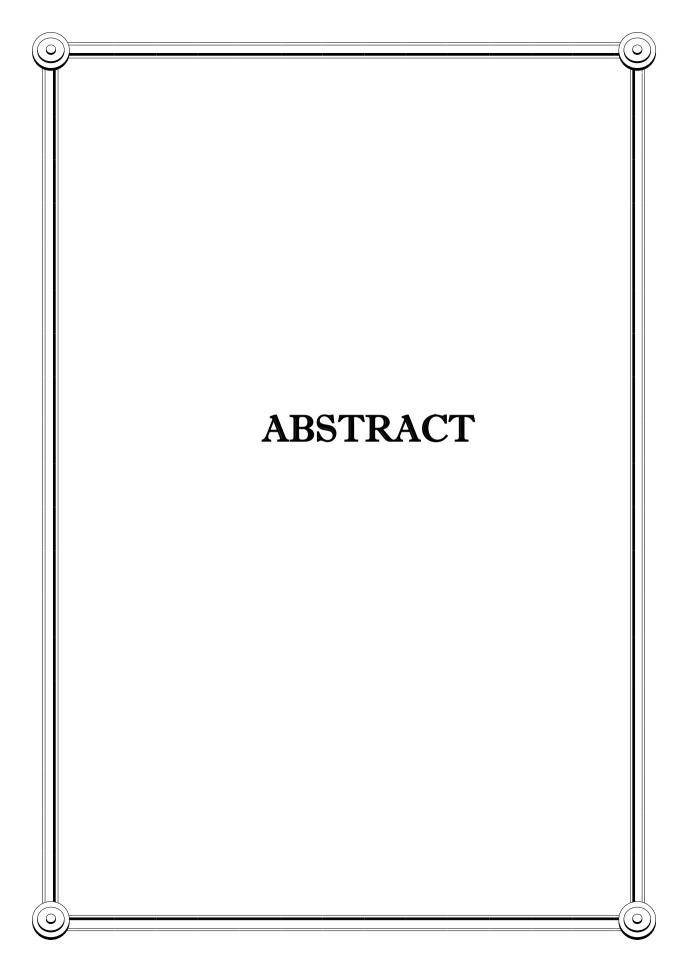
Last but by no means least; I'm extremely indebted to my beloved family

which has truly been the driving force behind all this hard work and success.

No words can express how grateful I am to my parents. My loving wife,

without her continuous support and encouragement this wouldn't have been

possible, thank you. My daughters and son, bright spots shining with love who


can always bring back my smile. My brother, and sister to their, kindness, love,

encouragement, and trust throughout my whole life.

Thank you very much.

Tamer M. Khedr, 2022

II

Development of Novel Solar Light-Activated Photocatalysts for Clean Energy Production and Degradation of Emerging Contaminants

$\mathbf{B}\mathbf{v}$

Tamer Mahmoud Ahmed Mahmoud Khedr

Assistant Lecturer, Nanomaterials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical Research and Development Institute (CMRDI)

ABSTRACT

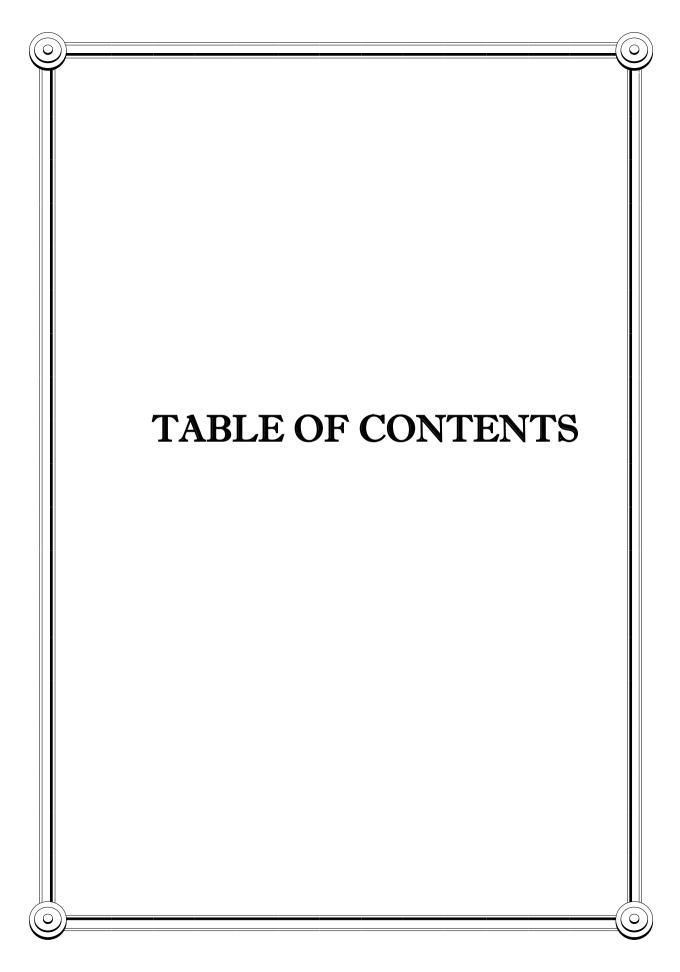
Energy and water crisis are two of the most serious threats to human life and property worldwide. Energy supply depends on water. Water supply depends on energy. The interdependency of water and energy is set to intensify in the coming years, with significant implications for both energy and water security. Each resource faces rising demands and constraints in many regions as a consequence of economic and population growth and climate change.

Hydrogen (H₂) has been broadly suggested as an alternative fuel to overcome energy shortages and environmental pollution because of its fascinating advantages, i.e., being renewable, eco-friendly, clean, recyclable, and with high-energy density. However, the present technologies (i.e., fossil fuel-based and renewable-based methods) used for hydrogen production are facing great challenges to deal with global sustainable development because they might be environmentally toxic, expensive or requiring external energy. Future sustainable energy scenarios require improved access to renewable energy sources and thus help to reduce the carbon footprint of the energy sector.

Over one billion people worldwide lack access to safe drinking water, which leads to many waterborne diseases and deaths. According to World Health Organisation (WHO), half of the world's population would be facing water shortage by 2025. Water polluted by emerging pollutants like cyanotoxins and pharmaceutical products has lethal effects on both the environment and living organisms. To address these threats, various technologies, such as adsorption, filtration, flocculation, sedimentation, coagulation, disinfection, chemical oxidation, chlorination and microbial degradation, have been developed to remove emerging from the water. However, these technologies are not effective from the viewpoint of cost and process efficiency. Moreover, either toxic sludge (solid waste with metabolites/byproducts) or concentrated wastewater is simultaneously created that requires further treatment. The dream concerning the implementation of a solar photocatalytic system combining the conversion of aqueous organic pollutants into value-added fuels, i.e., H₂, is still far from being realized because of technical, materials and reaction-mechanistic related issues. Titania (titanium(IV) oxide, TiO₂) is probably the most widely investigated due to high activity, stability, abundance, and low toxicity, but its application is limited due to charge carriers' recombination and inability of visible light (vis) absorption.

In this thesis, binary-phase (anatase/brookite) mesoporous TiO₂ (bare and C-N-S tri-doped), 2D S-doped mesoporous g-C₃N₄, and direct Z-scheme of 2D/2D mesoporous S-doped g-C₃N₄/Bi₂WO₆ photocatalysts were simply synthesized and were characterized using advanced techniques. The photocatalytic activities of as-synthesized photocatalysts were evaluated by photocatalytic H₂ generation, overall water splitting, and degradation of emerging pollutants (DCF and MC-LR), as well as simultaneous H₂ evolution and photodegradation of pollutants under UV, UV-vis and vis irradiation. The

results revealed that the photocatalytic H₂ evolution and degradation of organic pollutants under UV-vis and UV-A irradiation were boosted using bare mixedphase (anatase/brookite) mesoporous TiO₂ photocatalyst, compared with single-component TiO₂ (anatase and brookite) and P25-TiO₂. This remarkable activity could be attributed to an unique structure (mixed-phase and mesoporous), efficient light harvesting (bandgap narrowing), higher specific surface area, transfer of charge carriers between anatase and brookite phases (heterojunction type II), shallow electron traps, and possible interparticle charge transfer excitation (ICTE). Moreover, C-N-S tri-doped binary phase (anatase/brookite) mesoporous TiO₂ photocatalyst showed an enhanced photocatalytic activity towards H₂ generation and organic pollutants degradation under vis irradiation, compared with bare TiO₂ because of nonmetal doping. Compared with bulk g-C₃N₄, the 2D S-doped mesoporous g- C_3N_4 photocatalyst displayed a boosted photocatalytic activity for H_2 evolution and organic pollutants degradation under vis irradiation because of S-doping, 2D mesoporous structure, high surface area, high light-absorption ability, and high efficiency of electron-hole separation. Among the as-synthesized photocatalysts, the direct Z-scheme (S-doped g-C₃N₄/Bi₂WO₆) photocatalyst exhibited the best photocatalytic activity towards H₂ generation (co-catalystassisted and co-catalyst-free H₂ evolution), and overall water splitting, as well as degradation and mineralization of DCF and MC-LR, and simultaneous photocatalytic degradation of pollutants (DCF and MC-LR) and H₂ generation under vis irradiation. This enhanced activity could be greatly assigned to the photogenerated electron's migration from CB of Bi₂WO₆ to VB of g-C₃N₄ according to Direct-Z-scheme.


Keywords: Energy crisis; water crisis; heterogeneous photocatalysis; titania; heterojunction; interparticle charge transfer excitation (ICTE); $g-C_3N_4$; Z-scheme; H_2 ; water splitting; photodegradation.

Novelty of This Thesis:

The novelty of thesis includes the following:

- 1) Template-free hydrothermal method (i.e., simple operation, low cost, and environmentally friendly) was used to synthesize of binary-phase (A/B) mesoporous titania photocatalyst.
- 2) Titanium(III) sulfate ($Ti_2(SO_4)_3$ (i.e., good solubility in water and stability at ambient temperature) was used as a Ti precursor.
- 3) Facile synthesis of C-N-S tri-doped mixed-phase (A/B) mesoporous titania photocatalysts.
- 4) Boosted photocatalytic H₂ generation, as well as complete degradation and mineralization of emerging pollutants under UV, UV-vis and vis irradiation; by the synergistic effect (interparticle charge transfer excitation (ICTE)) of anatase and brookite, and charge carriers' transfer between two phases (type II heterojunction) in binary phase (A/B) TiO₂ photocatalyst.
- 5) Template-free one-pot synthesis of 2D mesoporous S-doped g- C_3N_4 photocatalyst.
- 6) Enhanced photocatalytic H₂ evolution, as well as complete degradation and mineralization of emerging pollutants under vis irradiation over 2D mesoporous S-doped g-C₃N₄ photocatalyst.
- 7) One-pot synthesis of 2D/2D direct Z-scheme of mesoporous.
- 8) Enhanced photocatalytic H_2 evolution (with using/without using cocatalyst), and overall water splitting, as well as complete degradation and mineralization of emerging pollutants.
- 9) Photocatalytic conversion of aqueous organic pollutants into value-added fuels, i.e., H₂.

Table of Contents

Table of contents	I-V
List of acronyms	VII-IX
List of Tables	XI-XV
List of Figures XVII-	-XXXI
Chapter 1	
Introduction and Study Objectives	
1. Introduction and study objectives	1-14
1.1. Introduction: problem statement	1-13
1.1.1. Energy crisis: Scarcity, increasing demand, and pollution	1-5
1.1.2. Water crisis: Scarcity, increasing demand, and pollution	5-13
1.2. Study objectives	. 13-14
Chapter 2	
Literature Review	
2. Literature review	. 15-48
2.1. Heterogeneous photocatalysis	15-48
2.1.1. TiO ₂ photocatalyst	. 16-27
2.1.2. g-C ₃ N ₄ photocatalyst	. 27-32
2.1.3. g-C ₃ N ₄ /Bi ₂ WO ₆ direct Z-scheme photocatalyst	. 32-48

Chapter 3

Experimental and Methods