

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

EVALUATION OF DOLIME FINE PERFORMANCE IN MITIGATING THE EFFECTS OF AN EXPANSIVE SOIL

By

Aymen Hasan Naser

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

CIVIL ENGINEERING - PUBLIC WORKS

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

EVALUATION OF DOLIME FINE PERFORMANCE IN MITIGATING THE EFFECTS OF AN EXPANSIVE SOIL

By

Aymen Hasan Naser

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

CIVIL ENGINEERING - PUBLIC WORKS

Under the Supervision of

Prof. Dr. Ahmed Hisham Mohammed Dr. Shehab Sherif Wissa

Professor of Geotechnical Engineering and Foundations Public Works Dept.

Cairo University

Assist. Professor of Geotechnical

Engineering and Foundations Public Works Dept.

Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

EVALUATION OF DOLIME FINE PERFORMANCE IN MITIGATING THE EFFECTS OF AN EXPANSIVE SOIL

By

Aymen Hasan Naser

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

CIVIL ENGINEERING – PUBLIC WORKS

Approved by the Examining Committee

Prof. Dr. Ahmed Hisham Mohammed

Assoc. Prof. Dr. Asmaa Moddather Hassan

Prof. Dr. Sayed Mohammed Elsayed

(Professor at the Faculty of Engineering, Ain Shams University, Egypt)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022 **Engineer's Name:** Aymen Hasan Naser

Date of Birth: 17/04/1994

Nationality: Iraqi

E-mail: <u>aymanh1188@gmail.com</u>

Phone: (+20)1013598553, (+964)7703105016

Address: Cairo – Haram

Registration Data: 01/03/2017

Awarding Date: / /2022

Degree: Master of Science

Department: Civil Engineering-Public Works

Supervisors:

Prof. Dr. Ahmed Hisham Mohammed

Dr. Shehab Sherif Wissa

Examiners:

Prof. Dr. Ahmed Hisham Mohammed
Assoc. Prof. Dr. Asmaa Moddather Hassan
Prof. Dr. Sayed Mohammed Elsayed
(Professor at the Faculty of Engineering, Ain Shams University, Egypt)

Title of Thesis:

EVALUATION OF DOLIME FINE PERFORMANCE IN MITIGATING THE EFFECTS OF AN EXPANSIVE SOIL.

Key Words:

Swelling soil, Swelling pressure, Dolime fine, Bentonite, Clay characterization.

Summary:

Expansive clays are considered problematic soils as they exhibit significant volume changes with the change in moisture content. Mixing swelling clays with dolime fine has been used as an improvement technique. Dolomite chips are obtained by crushing dolomite stones; while crushing a substantial solid waste is produced, it is called dolime fine. Dolime fine has very high percentage of CaO. It has been recommended as a binding agent that can replace pure lime. So dolime fines can be utilized to stabilize expansive soil. Their strength and availability characterize dolomite chips. An industrial swelling soil has been prepared by mixing bentonite with a natural clay soil to use it in this study, the mixing proportion was 75% Bentonite and 25% natural clay soil. Dolime chips were brought from Erbil city (northern Iraq), while bentonite was brought from Samawa city (southern Iraq), as natural soil was brought from the marshes of Basra city (southern Iraq).

Samples were prepared in the laboratory by mixing the swelling soil with (0%, 4%, 8%, and 12%) of the dolime fine relative to the weight of the soil for 0, 14, 28 curing days.

The test results showed that the addition of dolime fine, in different percentages, reduces the MDD, SP, L.L and I_p. Simultaneously, the MOC, CBR, UCS, and P.L were increased with increasing the percentage of dolime fine and the curing period.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Aymen Hasan Naser Date...../2022

Signature:

Acknowledgments

Firstly, all thanks and praise be to Allah (to him belongs mighty and majesty) who enabled me to achieve this work.

I would like to express my sincere thanks to Dr. Ahmed Hisham, Professor of Geotechnical Engineering, Faculty of Engineering, Cairo University, for all his valuable suggestions and helpful discussions.

I would like to express my great and deep thanks to my supervisor Dr. Shehab Wissa, Associate Professor of Geotechnical Engineering, Faculty of Engineering, Cairo University, for his valuable guidance, constant advice, and assistance throughout this work.

Finally, this thesis would not be possible without the help of my father, my mother, my wife Sara, and all my family, who continued to support and encourage me throughout the study time.

Table of Contents

Disclaimer	I
Acknowledgments	II
Table of Contents	III
List of Figures	V
List of Tables	IX
List of Symbols	X
Abstract	XI
CHAPTER ONE: INTRODUCTION	1
1.1 General	1
1.2 Problem Definition	2
1.3 The objective of the work	2
1.4 Layout of the Thesis	2
CHAPTER TWO: LITERATURE REVIEW	3
2.1 Introduction	3
2.2 Clay Minerals	4
2.3 Clay-Water System	8
2.4 Cation Exchange	9
2.5 Osmotic Pressure	10
2.6 Mechanism of Swelling	11
2.7 Mechanisms of Volume Change	12
2.8 Expansive Soil Problem Solutions	13
2.9 Factors affecting swelling characteristics	18
2.10 Methods of Measuring Swelling Pressure	22
2.11 The Uses and Properties of Dolomite Stone	28
2.12 Overview of Using Dolime Fine to Improving Expansive Soil	33
2.13 Soil Behavior with Dolime Fine	39
CHAPTER THREE: EXPERIMENTAL WORK	46
3.1 Scope	46
3.2 Materials Properties	46
3.3 Tested Clay Mixtures	52
3.4 Laboratory Testing Standards	53
CHAPTER FOUR: RESULTS AND ANALYSIS	61
4.1 Introduction	61
4.2 Modified Proctor Test	61

4.3 California Bearing Ratio Test (CBR)	65
4.4 Unconfined Compressive Strength Test (UCS)	67
4.5 One-Dimensional Consolidation (Swelling Test)	71
4.6 Atterberg Limits	74
CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS	79
5.1 Conclusions	79
5.2 Recommendations for Future Studies	81
REFERENCES	82
APPENDIX (A)	89

List of Figures

Figure (2-1) Ba	sic structural units in the silicon sheet, after (Grim, 1959)	5
Figure (2-2): B	asic structural units in octahedral sheet, after (Grim, 1959)	6
Figure (2-3): St	tructure of kaolinite layer, after (Murthy, 1989)	6
Figure (2-4): S	tructure of illite layer after (Murthy, 1989)	7
Figure (2-5): St	tructure of montmorillonite layer after (Murthy, 1989)	8
	stribution of ions adjacent to a clay surface according to the concept of the diffuse double layer, after (Mitchell J., 1976)	
Figure (2-7): M	lechanism of osmotic pressure in clay, after 1	1
	iple lime slurry injection planning for a building pad, after (Das, 1990	
Figure (2-9): F	locculated and dispersal soil structures	9
	Active zone in Houston area-Beaumont formation (after (Das, 1990))	
Figure (2-11): 0	Classification chart for swelling potential (Seed et al., 1962)	2
Figure (2-12): A	Apparatus of PVC, (Lambe, 1961)2	5
Figure (2-13) A	Applied Pressure versus Time, (Holtz & Gibbs, 1956)2	6
	welling Strain versus Applied Pressure, (Egyptian Code of Practice ECP)	6
	welling Strain versus Applied Pressure, (Egyptian Code of Practice ECP)	:7
	Void Ratio versus Applied Pressure, (Egyptian Code of Practice ECP).	
Figure (2-17): 1	Dolomite stones (stonecontact.com)	8
• •	Granular Dolomite marble from Thornwood, New York (geology.com)	1
Figure (2-19): 1	Dolomite crystals from Penfield, New York. (geology.com)	1
	Dolostone: from Lee, Massachusetts (geology.com) 3	
	Dolomite aggregate: Dolostone, used for asphalt paving from Penfield New York (geology.com)	
Figure (2-22): 1	Dolomitic marble from Thornwood, New York (geology.com) 3	3
• •	Behavior pattern of MDD of red mud-fly ash mixtures with Dolime fine (%) (Sabat & Mohanta, 2015)	3
- '	Behavior pattern of OMC of red mud-fly ash mixtures with Dolime fine (Sabat & Mohanta, 2015)	4
	Behavior pattern of UCS of red mud-fly ash mixtures with Dolime fin (%) (Sabat & Mohanta, 2015)	
• , ,	Behavior pattern of CBR of red mud-fly ash mixtures with Dolime fin (%) (Sabat & Mohanta, 2015)	

Figure (2-27): Behavior pattern of MDD with dolime fines, , (Golakiya & Savani 2015)	
Figure (2-28): Behavior pattern of OMC with Dolime fines, (Golakiya & Savani, 2015)	
Figure (2-29): Variation of Free Swell Index with dolime fine, (Golakiya & Sava 2015)	
Figure (2-30): Behavior pattern of liquid limit with dolime fines, (Golakiya & Sa 2015)	
Figure (2-31): Behavior pattern of plastic limit with dolime fines, (Golakiya & Savani, 2015).	38
Figure (2-32): Behavior pattern of UCS strength with dolime fines for 0 days cur period, (Golakiya & Savani, 2015).	_
Figure (2-33): Electric Arc Furnace Dust (EAFD), (Golakiya & Savani, 2015)	39
Figure (2-34): Soil-dolime fine mixing process (Slideshare.com)	40
Figure (2-35): Soil-dolime fine mixing process (Slideshare.com)	40
Figure (2-36): Soil texture before and after mixing process (Slideshare.com)	41
Figure (2-37): Typical Mixing machine (Slideshare.com)	41
Figure (2-38): Wirtgen WR 2400 mixing machine (www.wirtgen-group.com)	41
Figure (2-39): Mixing works for a road (www.wirtgen-group.com)	42
Figure (3-1) Typical mixing machine using in the site	46
Figure (3-2) Mixing operation using steel rod in the laboratory	47
Figure (3-3) Iraq map shows the cities where the materials have brought	47
Figure (3-4) Grain Size Distribution of tested clay	49
Figure (3-5) Grain Size Distribution of dolime fine	50
Figure (3-6) Grain Size Distribution of bentonite	50
Figure (3-7) Grain Size Distribution of natural soil	51
Figure (3-8): X-ray diffraction test result on the dolime fine	51
Figure (3-9): X-ray diffraction apparatus, Model D2 Phaser - Bruker Company – Germany	
Figure (3-10): Dolomite chips used in this study before crushing	52
Figure (3-11): Cylindrical mold	54
Figure (3-12): Cylindrical mold with soil mixture.	54
Figure (3-13): The three used materials	55
Figure (3-14): Apparatus of One-Dimensional Consolidation test	56
Figure (3-15): Elements of One-Dimensional Consolidation test apparatus	56
Figure (3-16): Trimming process for soil sample inside the ring of odometer	57
Figure (3-17): Apparatus of Unconfined Compressive Strength Test	58
Figure (3-18): Form of failure for 0% and 4% of the soil-dolime fine mixture	58
Figure (3-19): Form of failure for 8% and 12% of the soil-dolime fine mixture	59

Figure (3-20):	Apparatus of CBR during the test	0
Figure (3-21):	Casagrande apparatus using for liquid limit determination	0
Figure (4-1): I	Ory Density (g/cm ³) vs. Water Content (%) for Modified Proctor Test 62	2
Figure (4-2): N	Maximum Dry Density (g/cm ³) versus dolime fine (%)	2
Figure (4-3): I	Decrements in MDD versus dolime fine (%)	3
Figure (4-4): 0	Optimum moisture content (%) versus dolime fine content (%) 63	3
Figure (4-5): I	ncrements in MDD versus dolime fine (%)	4
Figure (4-6): N	ADD versus dolime fine plots for each study	4
Figure (4-7): 0	OMC versus dolime fine plots for each study	4
Figure (4-8): S	Stress versus Penetration for CBR test after 0 curing days	5
Figure (4-9): S	Stress versus Penetration for CBR test after 14 curing days	5
Figure (4-10):	Stress versus Penetration for CBR test after 28 curing days 66	6
Figure (4-11):	CBR values increasing with increase dolime fine content and curing periods	6
Figure (4-12):	Effect of curing periods and dolime fine contents on the CBR values 67	7
Figure (4-13):	Improving perc. of the CBR value due to adding dolime fine contents	7
Figure (4-14):	Stress versus strain for swelling clay mixed with different dolime fine content without curing days.	8
Figure (4-15):	Stress versus strain for swelling clay mixed with different dolime fine content after 14 curing days	8
Figure (4-16):	Stress versus strain for swelling clay mixed with different dolime fine content after 28 curing days	
Figure (4-17):	UCS values for swelling clay mixed with different dolime fine content and different curing days.	
Figure (4-18):	Effect of the dolime fine contents and curing period on the UCS values	
Figure (4-19):	UCS improvement increments versus dolime fine content for different curing period	
Figure (4-20):	UCS values and soil behavior between this study and the others 7	1
Figure (4-21):	Swelling strain versus pressure for swelling clay mixed with different dolime fine content and 0 curing days	
Figure (4-22):	Swelling strain versus pressure for swelling clay mixed with different dolime fine content and 14 curing days	
Figure (4-23):	Swelling strain versus pressure for swelling clay mixed with different dolime fine content and 28 curing days	
Figure (4-24):	Dolime fine effect on the swelling pressure for different curing periods.	
Figure (4-25):	Curing period effect on the swelling pressure for different dolime fine content.	3

Figure (4-26):	Decrement of the swelling pressure (SP) due to adding doline fine under different curing period	74
Figure (4-27):	Effect of dolime fine on the liquid limit for various curing period	74
Figure (4-28):	Effect of curing period on the liquid limit for various dolime fine	75
Figure (4-29):	Decrement values of the liquid limit for various curing periods	75
Figure (4-30):	Plastic limit values versus dolime fine for various curing periods	76
Figure (4-31):	Curing period Effect on the plastic limit for various dolime fine conte	
Figure (4-32):	Improvement perc. of the plastic limit due to adding dolime fine for various curing period	76
Figure (4-33):	Plasticity index values versus dolime fine for various curing periods.	77
Figure (4-34):	Curing period Effect on the plasticity index for various dolime fine content	77
Figure (4-35):	Improvement perc. of the plastic limit due to adding dolime fine for various curing period.	77
Figure (4-36):	Liquid limit values for different studies	78
Figure (4-37):	Plastic limit values for different studies	78
Figure (4-38):	Plasticity index values for different studies	78
Figure (A-1):	XRD analytical report for dolime fine.	89

List of Tables

List of Symbols

A Activity of Clay

ASTM American Standard for Testing and Materials

C Clay Content

CBR California Bearing Ratio

D Diameter

e_o Initial Void Ratio

F.S. Free Swell

γ Unit Weight

G_s Specific Gravity

γ_d Dry Unit Weight

γd⋅max. Maximum Dry Unit Weight

MDD Maximum Dry Density

GSD Grain Size Distribution

L.L Liquid Limit

P.L Plasticity Limit

S.L Shrinkage Limit

I_p Plasticity Index

OMC Optimum Moisture Content

P Load

P_{sw} Swelling Pressure

S Swelling Percent

SP Swelling Potential

UCS Unconfined Compressive Strength

W_c Water content