

بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

NA		T R	ملاحظات:
4 1	6997		
	AIMSWAM	R. CIVILLE HARINA	
1	5/15/20	1992	- 1 3 m. f

بمكات وتكنولوجبارته

A Comparative Study between High Flow Nasal Oxygen Therapy and Venturi Mask Oxygen Therapy for Postoperative Laparoscopic Bariatric Surgery Patients with Atelectasis

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Anesthesiology, Intensive Care and Pain Management

 $\mathcal{B}y$

Asmaa Ahmed Nabeeh Negmeldin Abdelrahman Allam

M.B.B.Ch., M.Sc, Faculty of Medicine Ain Shams University

Under Supervision of

Prof. Dr. Galal Adel Mohamed Abdelreheem Elkady

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Asst. Prof. Dr. Mayar Hassan Sayed Ahmed Elsersi

Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Asst. Prof. Dr. Mohamed Abdelsalam Aly Algendy

Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Amr Fouad Hafez Helmy

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2022

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I would like to express my thanks and appreciation to **Prof. Dr. Galal Adel Moammed Adbetreheem Elkady**, Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his opinions, timely feedback, insights and the effort and time he has devoted to the fulfillment of this work. I am indebted to his meticulous follow-up and constructive criticism.

I would also like to thank, Asst. Prof. Dr. Mayar Hassan Sayed Ahmed Elsersi, Assistant professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for the efforts and time to accomplish this work.

I can't forget to thank with all appreciation, Asst. **Prof. Dr. Mohammed Abdelsalam Ally Algendy**, Assistant professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his great efforts and time he has devoted to accomplish this work.

I would like also to thank **Dr. Amr Found Hafez Helmy**, Lecturer of Anesthesiology, Intensive Care and Pain
Management, Faculty of Medicine, Ain Shams University, for
his valuable role in the practical part of this work.

Last but not least, this work is dedicated to all our **patients**, without them, this work would have been of no value, and also to my **colleagues** for their support and care in every step of my career.

I can't forget to thank all members of my family, especially my Parents, for the support and care in every step of my life.

Asmaa Ahmed Nabeeh Negmeldin Abdelrahman Allam

Tist of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Chapter 1: Oxygen Delivery Systems	4
Chapter 2: Clinically Severe Obesity	27
Chapter 3: Atelectasis and its Management	34
Patients and Methods	59
Results	69
Discussion	75
Summary	79
Conclusion	80
References	81
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
2D	Two dimensional
ALI	
	Acute rang injuryAcute respiratory distress syndrome
	2 0
	American Society of Anesthiologists
_	Bedside lung US in emergency
BMI	
-	Centimeter Water
CO_2	
	Continuous positive airway pressure
CT scan	Computerized tomography
CXR	Chest X-ray
ERV	Expiratory reserve volume
FiO_2	Fraction of Inspired Oxygen
FRC	Functional Residual Capacity
GA	General Anaesthesia
HFNO_{2}	High Flow Nasal Oxygen
IAP	Intra-abdominal pressure
ICU	Intensive Care Unit
Kg/ m ² ······	··· Kilogram / meter square
L/Min	Liters / minute
LLL	Left lower lobe
LUL	Left upper lobe
Lung US	Lung Ultrasound
m RAS	modified radiological atelectasis
mm Hg	Millimeters Mercury
_	Non-invasive ventilation
OHS	Obesity hypoventilation syndrome

Tist of Abbreviations cont...

Abb.	Full term
OR	Operating room
OSA	Obstructive Sleep Apnea
PaCO ₂	Partial Pressure of Carbon Dioxide in arterial blood
PaO ₂	Partial Pressure of Oxygen in arterial blood
PaO ₂ / FiO ₂	Partial Pressure of Oxygen / Fraction of Inspired Oxygen
PEEP	Positive end-expiratory pressure
RLL	Right lower lobe
RML	Right middle lobe
RUL	Right upper lobe
VMO_2	Venturi Mask Oxygen

Tist of Tables

Table No	. Title	Page No.
Table 1:	Flow rates and FiO ₂ with lodelivery device, Predicted FiO ₂ flow systems assume a norm pattern of ventilation	values for low- nal and stable
Table 2:	Total gas flow rate from Verdifferent oxygen flow rates	
Table 3:	The table shows escatation of Oxygen in HFNO2 group	
Table 4:	Lung ultrasound score calculation	n68
Table 5:	Baseline characteristics of participating in the study presens SD or frequency (%) as appropria-	nted as Mean ±
Table 6:	PaO ₂ / FiO ₂ is significantly hig group	
Table 7:	Respiratory Rate is significantly group. LU/S score at 24 hours a at 24 hours are statistically insignstay is statistically significantly	nd mRAS score gnificantly. ICU

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Nasal cannula	7
Figure 2:	Simple face mask	8
Figure 3:	Non-rebreathing mask	10
Figure 4:	High-concentration reservoir rebreathing mask)	
Figure 5:	Partial rebreathing mask	12
Figure 6:	Geovanni Battista Venturi	14
Figure 7:	James Earl Moran Campbell	15
Figure 8:	Bernoulli's principle	16
Figure 9:	The Venturi effect	17
Figure 10:	(A) (a) Venturi mask, (b) range of available, (c) operation of Venturi	
Figure 11:	Diagram of the high-flow nasal car	nnula23
Figure 12:	AIRcon respiratory humidification	system24
Figure 13:	WILAmed Nasal High-Flow system	n25
Figure 14:	Oxi.Plus TM , a special designed of cannula made of soft silicon, encomfort and does not hinder the puse, patients can drink, eat and ta	hances patient atient. While in
Figure 15:	HFNO ₂ enables the patient eat an interface dislodgement	
Figure 16:	Effects of obesity, positioning, and lung volumes	
Figure 17:	Sleeve Gastrectomy Surgery	33
Figure 18:	Bat sign	50
Figure 19:	B lines	51

Tist of Figures cont...

Fig. No.	Title	Page No.	
Figure 20:	Lung pulse		52
Figure 21:	High Flow Nasal Oxygen Therapy Alg	orithm	65
Figure 22:	Venturi Mask Oxygen Therapy Algorit	thm	67
Figure 23:	Flow chart for patient enrollment		69
Figure 24:	PaO ₂ / FiO ₂ throughout the stud significantly higher in HFNO ₂ group		71
Figure 25:	Respiratory Rate is significantly lower group		72

Introduction

besity is expressed as Body Mass Index (BMI) which is the weight in Kilograms divided by the height in square meters (Kg/m²) of more than 30. Obesity is associated with multiple should pay attention to the respiratory comorbidities, one complications. It affects lung volumes causing restrictive pattern and decreases the Functional Residual Capacity (FRC) to the point that is less than the closing volume resulting in atelectasis and hypoxemia. Obesity also increase the minute ventilation and hence work of breathing, decreases lung compliance and increases airway resistance. It can result in obstructive sleep apnea (OSA) (Hines et al., 2018).

Obesity combined with postoperative respiratory muscle dysfunction may lead to respiratory failure. As a result, obesity is associated with a higher risk of postoperative hypoxemia (Stéphan et al., 2017).

Baltieri et al. (2016) reported a 37 percent prevalence of atelectasis in obese patients after bariatric surgery in a retrospective observational study. Respiratory complications, on the other hand, are not uncommon in the general surgical population and have been demonstrated to lengthen hospital stays and increase death (Fulton et al., 2018).

High Flow Nasal Oxygen (HFNO₂) therapy provides warmed humidified oxygen and low-level, flow-dependent positive airways pressure, and may be more tolerable than Continuous positive airway pressure (CPAP) or non-invasive

ventilation; also, HFNO₂ improves washout of nasopharyngeal dead space, resulting in improved oxygenation. In giving prophylactic support to preterm newborns after extubation, HFNO₂ has been demonstrated to be both safe and non-inferior to standard CPAP with lower incidence of nasal trauma than in the CPAP group. When compared with standard care, prophylactic postoperative high-flow nasal oxygen reduced hospital length of stay and intensive care unit re-admission (Zochios et al., 2018).

HFNO₂ therapy involves the continuous delivery of up to 60 L/min with optimal heat and humidity through a nasal cannula. Interestingly, HFNO₂ improves oxygenation by increasing both end-expiratory lung volume and tidal volume and is most beneficial in patients with higher BMI (Body Mass Index) (Stéphan et al., 2017).

The incidence of obesity (defined by a body mass index (BMI) 30 kg/m²) is increasing worldwide. In selected individuals, bariatric surgery may offer a means of achieving long-term weight loss, improved health, and healthcare cost reduction. Physiological changes that occur because of obesity and general anesthesia predispose to respiratory complications following bariatric surgery (Fulton et al., 2018).

According to *Hernández et al.* (2016) among high-risk adults who have undergone extubation, high flow conditioned oxygen therapy was not inferior to NIV for preventing re-intubation and post-extubation respiratory failure. High-flow conditioned oxygen therapy may offer advantages for these patients.

AIM OF THE WORK

The aim of this study is to compare the clinical outcome of treating postoperative laparoscopic sleeve gastrectomy surgery patients having atelectasis by using High Flow Nasal Oxygen Therapy versus Venturi Mask Oxygen Therapy.

OXYGEN DELIVERY SYSTEMS

hey are classified into low-flow (or variable performance) and high-flow (or fixed performance) systems. Low-flow systems provide small amounts of 100 % oxygen as a supplement, with FiO₂ determined by the patient's pattern of breathing and minute ventilation. The greater portion of the inspired volume is obtained from room air. High-flow systems are designed to supply premixed oxygen in volumes that provide the patient's total ventilatory requirements. An advantage of high-flow systems is that the level of FiO₂ remains constant regardless of any changes that may occur in the ventilatory pattern (*Villanueva et al.*, 2016).

Low-Flow Systems

Low-flow oxygen devices are characterized by simplicity and ease of use, healthcare providers' familiarity with the system, low cost, and patient acceptance (*Villanueva et al.*, 2016).

Table 1: Flow rates and FiO_2 with low-flow oxygen delivery device, Predicted FiO_2 values for low-flow systems assume a normal and stable pattern of ventilation (*Villanueva et al.*, 2016)

Low-flow system	Oxygen flow rates (L)	FiO ₂
	1	0.24
	2	0.28
Nasal cannula	3	0.32
nasai camuia	4	0.36
	5	0.40
	6	0.44
Simple face mask	5- 6	0.40
	6- 7	0.50
	7- 8	0.60
	6	0.60
	7	0.70
Partial re-breathing mask	8	0.80
	9	0.80 +
	10	0.80 +
Non robroathing most	10	0.80 +
Non-rebreathing mask	15	0.90 +

Standard nasal oxygen cannula

It is the most frequently used low-flow oxygen delivery system consists of a pronged nasal cannula (Figure 1) to deliver 100 % oxygen at flow rates of 0.5–6 L/min, delivering a FiO₂ ranging from 0.24 to 0.40. Patients generally cannot tolerate an oxygen flow rate of more than 6 L/min from the nasal cannula because of nasal discomfort. If the oxygen flow rate exceeds 4