

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Role of Varicocele Sclerotherapy in the Management of Benign Prostatic Hyperplasia and its Associated Lower Urinary Tract Symptoms

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Radiology

 $\mathcal{B}y$

Zeinab Aly Moussa Aly M.B.B.Ch., M.Sc. Radiology

Under the Supervision of

Prof. Dr. Mohamed El Gharib Abou El Ma'aty

Professor of Radiodiagnosis and Interventional
Radiology
Faculty of Medicine, Ain Shams University

Prof. Dr. Waleed Mohamed Abd El Hameed Hetta

Professor of Radiodiagnosis and Interventional
Radiology

Faculty of Medicine, Ain Shams University

Dr. Khaled Sayed Ahmed Soliman

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2022

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Merciful.

It gives me a great pleasure to express my deepest gratitude and appreciation to Prof. Dr. Mohamed El Gharib Abou El Ma'aty, Professor of Interventional Radiology; Faculty of Medicine, Ain Shams University, for the great support and encouragement he gave me and also for granting me the honor of working under his supervision.

Deep thanks and indebtedness are also forwarded to Prof. Dr. Waleed Mohamed Abd El Hameed Hetta, Professor of Interventional Radiology, Faculty of Medicine, Ain Shams University, for his valuable supervision, generosity and the opportunity to work with him on the cases illustrated in this thesis.

Soliman, Lecturer of Diagnostic Radiology, Faculty of Medicine, Ain Shams University, for his guidance and continuous help throughout this work.

Special thanks to my family for their support.

Zeinab Aly Moussa Aly

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Anatomy and Haemodynamics	5
Pathophysiology and Diagnosis	26
Technique	54
Patients and Methods	71
Results	79
Illustrative Cases	89
Discussion	107
Limitations and Recommendations	111
Summary and Conclusion	112
References	
Arabic Summary	

List of Abbreviations

Abb.	Full term
ADC	Apparent Diffusion Coefficient
	Amplatzer vascular plugs
	Brightness mode
BOO	Bladder outlet obstruction
BPE	Benign prostatic enlargement
	Benign prostatic hyperplasia
	Bladder wall thickness
CBC	Complete blood picture
CC	Cubic centimetre
cm	Centimetre
(MD) CT	(Multidetector) computed tomography
	Dihydrotestosterone
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
<i>DO</i>	Detrusor over activity
DRE	Digital rectal examination
<i>F</i>	French
FT	Free testosterone
<i>GV</i>	Gonadal vein
	(Milli) gram/millilitre
	milligram/kilogram
INR	International normalized ratio
<i>IPSS</i>	International prostate symptom score
_	Interquartile range
<i>ISV</i>	Internal spermatic vein
	Inferior vena cava
	Lower urinary tract symptoms
	3 rd or 4 th lumbar vertebral body
MCi	Millicurie
Mg	-
MHz	_
Min	
	Millilitre (per kilogram)
Ml/sec	Millilitre (per second)

List of Abbreviations cont.

Abb.	Full term
(Mm) ²	Millimetre (squared)
MmHg	Millimeter mercury
MR (I)	Magnetic resonance (imaging)
(m) Sec	Millisecond
NBCA (-MS)	N-Butyl 2 Cyanoacrylate (-
	methacryloxysulfolane)
Ng (/ml)	Nanogram (/millilitre)
OBS	Overactive bladder syndrome
<i>OWVs</i>	One-way valves
P value	Probability value
	Prostate-specific antigen
PVR	Post-void residual
RBCs	Red blood cells
Qmax	Maximum urinary flow rate
QoL	Quality of Life
	Scrotal blood pool index
<i>5D</i>	Standard deviation
SHBG	Sex hormone binding globulin
SPSS	Statistical Package for the Social
	Sciences
STDs	Sexually transmitted diseases
	Sodium tetradecyl sulfate
Tc	Technetium
TRU5	Transrectal ultrasound
TURP	Transurethral resection prostatectomy
T1WI	T1 weighted images
	T2 weighted images
	Urinary tract infections
<i>3D</i>	Three dimensional
°C	_
Π	Pi (=3.14)

List of Tables

Table No.	Title	Page No.
Table 1:	Demonstrates Qmax and PS prior to sclerotherapy	
Table 2:	Demonstrates mean prostativoid residual volumes pre inte	_
Table 3:	Demonstrates post so technical & clinical success ra	• •
Table 4:	Statistical significance of I changes post sclerotherapy	•
Table 5:	Statistical analysis of the chasexual satisfaction, prostatic residual volumes, Qmax & post sclerotherapy	& post-void PSA levels

List of Figures

Fig. No.	Title Page No.	
Fig. 1:	Diagram showing testicular anatomy (A) Cut-away view and (B) Cross-sectional view	
Fig. 2:	Testicular venous drainage	7
Fig. 3:	Pampiniform plexus of veins formation	8
Fig. 4:	Anatomical variations of the testicular veins	9
Fig. 5:	Double IVC	10
Fig. 6:	Left ISV varicocele & collaterals	12
Fig. 7:	Normal B-mode testicular appearance	12
Fig. 8:	Pampiniform plexus of veins pre-Valsalva	
	and post Valsalva	13
Fig. 9:	Normal Doppler testicular appearance	14
Fig. 10:	(A) The reflux time is less than 1000 ms and is non-pathologic (B) The reflux time is	
	about 1400 ms and is pathologic	14
Fig. 11:	Prostatic volume by transabdominal sonography	15
Fig. 12:	Prostatic biopsy via transrectal sonography	16
Fig. 13:	Bladder volume sonographic measurement	17
Fig. 14:	ISV drainage laterality with collaterals	18
Fig. 15:	Right testicular venography showing retroperitoneal collaterals	18
Fig. 16:	CT 3D volume rendering illustrating retroperitoneal collaterals of left gonadal vein	20
Fig. 17:	Upper image shows bilateral testicular venous courses at the proximal, middle and distal parts with lower image showing coronal and sagittal reformats	
Fig. 18:	Normal scrotal thermography	21
Fig. 19:	Diagram illustrating ISV anatomy with physiologic venous pressures	23

List of Figures cont.

Fig. No.	Title Page	No.
Fig. 20:	Prostatic-testicular venous connections	24
Fig. 21:	Normal spermatic veins & varicocele	26
Fig. 22:	The Nutcracker phenomenon	27
Fig. 23:	Left ISV drains in left renal vein while the right one drains directly into IVC	28
Fig. 24:	Hydrostatic pressures of the testicular- prostatic venous drainage backflow in Varicocele	31
Fig. 25:	Simplified diagram of the left male urogenital veins, whose impaired valves result in varicocele development	32
Fig. 26:	Diagram showing the different zones of the prostatic gland	33
Fig. 27:	Left-hand side shows a gross specimen of a normal prostatic gland and right-hand side shows prominent prostatic periurethral nodularity with slit-like urethra	33
Fig. 28:	Left-hand side shows a microscopic slide of a normal prostatic gland with annotations and right-hand side shows benign prostatic hyperplasia with luminal infoldings	34
Fig. 29:	Diagnosis of varicocele according to international guidelines	
Fig. 30:	Varicoceles clinical grading	
Fig. 31:	International prostatic symptom score	
Fig. 32:	Urinary flow studies	
Fig. 33:	Varicocele grading according to diameter	
Fig. 34:	Prostate size via transabdominal ultrasound	
	indicating benign prostatic hypertrophy	42
Fig. 35:	Waveform changes in standing position with Valsalva inversion of reflux direction,	47
	increase of flow showing plateau	43

List of Figures cont.

Fig. No.	Title	Page No.
Fig. 36:	Various varicocele s	
Fig. 37:	Scrotal arteriovenous m mimicking varicocele	
Fig. 38:	Intra and extra testicular varicoc	eles47
Fig. 39:	Siegel classification of the right 1	:SV48
Fig. 40:	Left ISV Bähren/Murray classifica	ations48
Fig. 41:	Bähren classification of the left 1 and 5)	,
Fig. 42:	Right enhancing serpiginous val	ricoceles in
Fig. 43:	High T2WI serpiginous varicocele	
Fig. 44:	Transition zone with typical benice hyperplasia-related changes	gn prostatic
Fig. 45:	Scrotal scintigraphy of left Grade2; Ieft/right SBPI = 1.85	varicocele
Fig. 46:	Asymmetric thermal pattern in part of the testicles in thermogra	• •
Fig. 47:	Right femoral access du	_
Fig. 48:	Seldinger technique	
Fig. 49:	Types of catheters	
Fig. 50:	Sclerotherapy procedure	
Fig. 51:	Glue ISV embolization	
Fig. 52:	Coil embolization	
Fig. 53:	Embolization via plugs & balloons	
Fig. 54:	Bar Chart representing the percentages categorized accordifferent age groups strata in year	patients' ording to
Fig. 55:	Pie Chart showing percentages complaints categories	of patients'

List of Figures cont.

Fig. No.	Title	Page	No.
Fig. 56:	Pie chart demonstrating IPSS grades to sclerotherapy	-	82
Fig. 57:	Pie chart demonstrating post emboliz complications' percentages		85
Fig. 58:	The change in the IPSS grades sclerotherapy	-	87
Fig. 59:	Box & Whisker Charts demonstrating skewness of the distribution of the post sclerotherapy IPSS & QoL scores	re &	88
Fig. 60:	Case 1		92
Fig. 61:	Case 2		95
Fig. 62:	Case 3		98
Fig. 63:	Case 4		102
Fig. 64:	Case 5		106

Introduction

Benign prostatic hyperplasia (BPH) is one of the most prevalent ailments of aging men, affecting nearly 50% and 100% of this population by the time they reach 50 and 80 years of age, respectively, with a detrimental impact on their quality of life (QoL) (Landau & Welliver, 2020).

The prostate grows at a rate of 2.5% per year in higher age groups and the age-related prostatic enlargement mainly affects the prostatic periurethral zone. Subsequent prostatic urethral compression occurs with resultant urinary outflow obstruction, urinary bladder hypertrophy and reduction of the bladder volume reservoir (Munsif et al., 2021).

The lower urinary tract symptoms affect up to 74% of adults above 40 years, 42% of whom report a moderate degree of symptoms. Also, an age-dependent lower urinary symptomatic progression occurs in 5-year increments with a resultant poor sexual life due to erectile & ejaculatory dysfunctions and side effects of antiandrogenic medications (Lim, 2017).

To further explore the underlying mechanisms of prostatic enlargement, Gat et al. proposed that the blood flow mechanics of the anatomically connected prostatic and testicular veins follow Pascal's and Bernoulli's laws, which postulate that the fluid hydrostatic pressure equalizes across communicating vessels (Gat et al., 2008).

The age-related valvular destruction of the spermatic veins establishes continuous blood columns with elevated hydrostatic pressures that form a pressure gradient diverging the flow carrying free testosterone (dihydrotestosterone or DHT) from the testes to the prostate with subsequent prostatic congestion & androgen-dependent prostatic hyperplasia (Gat et al., 2008).

Gat referred to the testicular-prostatic venous backflow as 'the backdoor phenomenon', which was used to explain the biologic paradox of testosterone-dependent BPH despite ageserum testosterone decline. Subsequently, dependent considered varicoceles sclerotherapy to be a super-selective intraprostatic androgen deprivation therapy because the occlusion of the refluxing spermatic veins and their vertical bypasses eliminates the testicular-prostatic pressure gradient with backflow cessation and reversal of the prostatic hyperplasia (Gat et al., 2008).

Several studies agreed with the Gat theory while others rejected it. The supporting studies included the Strunk et al. **study** that detected an improvement of the urinary symptoms upon sclerotherapy application in patients with prostatomegaly, the Ur Rehmen et al. study that found the pressure in the incompetent left ISV to be as postulated by Gat et al. (31 mmHg with Valsalva) using direct measurement, and the Pejčić et al. study that detected a fourfold rise in the dihydrotestosterone (DHT) quantity of the BPH specimens using mass spectrometry.

On the other hand, studies that rejected the Gat theory disputed the proposed causal relationship between varicoceles & BPH, and claimed that prostatic enlargement is a multifactorial process caused by androstenedione-dependent DHT, aromatasedependent estrogen stromal proliferation, androgen & estrogen receptors overexpression, chronic inflammation, and immune dysregulation (Chen et al., 2020).

In addition, two prospective studies published different results from those of the Gat studies; Gaona et al. study uncovered no statistical significance in varicoceles percentage between patients with prostatic volumes ≥ 40 ml and < 40 ml and De Caestecker et al. study detected high periprostatic plexus testosterone in only 2 out of 7 patients undergoing Millin prostatectomy for BPH.