

بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

NA		T R	ملاحظات:
4 1	6997		
	AIMSWAM	R. MININERRINA.	
1	5/15/20	1992	- 1 3 m. f

بمكات وتكنولوجبارته

Cairo University Faculty of Veterinary Medicine Dept. of Biochemistry and Chemistry of Nutrition

"Effect of probiotics on some growth related genes in broilers"

A Thesis presented by

Nessma Hassan Hassan Ahmed

B.V.Sc., Cairo University. (2007) M. V. Sc., Cairo University. (2014)

For

PhD. Degree

(Biochemistry and Chemistry of Nutrition)

Under Supervision of

Prof. Dr. Hassan Amer

Prof. of Biochemistry and Chemistry of Nutrition - Faculty of Veterinary Medicine Cairo University

Prof. Dr. Mohamed El Hady

Prof of Toxicology and Forensic Medicine Faculty of Veterinary Medicine Cairo University

Prof. Dr. Marwa Ibrahim

Prof. of Biochemistry and Chemistry of Nutrition - Faculty of Veterinary Medicine Cairo University

Dr. Ismael Moustafa

Lecturer of Biochemistry and Chemistry of Nutrition - Faculty of Veterinary Medicine Cairo University Cairo University
Faculty of Veterinary Medicine
Dept. of Biochemistry and Chemistry of Nutrition

Supervision Sheet

Supervisors

Prof. Dr. Hassan Amer Professor of Biochemistry and Chemistry of Nutrition

Faculty of Veterinary Medicine - Cairo University.

Prof. Dr. Marwa Ibrahim Professor of Biochemistry and Chemistry of Nutrition

Faculty of Veterinary Medicine - Cairo University.

Prof. Dr. Mohamed El Hady Prof of Toxicology and Forensic Medicine

Faculty of Veterinary Medicine - Cairo University

Dr. Ismael MoustafaLecturer of Biochemistry and Chemistry of Nutrition

Faculty of Veterinary Medicine - Cairo University

Cairo University Faculty of Veterinary Medicine Dept. of Biochemistry and Chemistry of Nutrition

Name : Nessma Hassan Hassan Ahmed Hassan

Nationality : Egyptian

Department: Biochemistry and Chemistry of Nutrition

Title of thesis: "Effect of probiotics on some growth related

genes in broilers".

Supervisors:

Prof. Dr. Hassan Amer

Professor of Biochemistry and Chemistry of Nutrition Faculty of Veterinary Medicine - Cairo University.

Prof. Dr. Marwa Ibrahim

Professor of Biochemistry and Chemistry of Nutrition Faculty of Veterinary Medicine - Cairo University.

Prof. Dr. Mohamed El Hady

Prof of Toxicology and Forensic Medicine Faculty of Veterinary Medicine - Cairo University.

Dr. Ismael Moustafa

Lecturer of Biochemistry and Chemistry of Nutrition Faculty of Veterinary Medicine - Cairo University

ABSTRACT:

The study aimed to evaluate two newly introduced two probiotics, that widely used lately in Egyptian farms: Biosol (lipotropic factor containing probiotics) and/or Zemos. Their effects on growth performance, blood parameters, carcass traits, and some growth and immunity-related genes transcription in broiler chickens, were investigated to figure out the best regimen for their use in improving growth performance. 400 one-day-old Cobb broiler chicks were furnished by a commercial hatchery and randomly distributed into four equal groups of 100 birds each. Group 1 was used as a control group. Each day, Group 2 received 120 g/10,000 chick a daily intake of Probiotic 1(Biosol) in drinking water. Group 3 supplemented a three day interval of probiotic 2 (Zemos) at a dose of 0.25mL/L of drinking water. Group 4 received a combination of 2 probiotics (Biosol + Zemos), with the same weekly dose of each probiotic given alternately. All chickens were fed and hydrated ad libitum during the trial, and exposed to light for 24 hours. Chicks fed diets enriched with Biosol and (Biosol + Zemos) gained more weight and had lower feed conversion rates, according to our findings. Total protein levels increased while cholesterol and triglyceride levels decreased. We can sum that treating broilers with probiotics, particularly Biosol, can improve their growth performance as well as the biochemical features of their blood and transcript levels of the genes under study.

Keywords:

Probiotic; Broilers; Performance; mTOR; Smyd; TLR-4; NBN

Dedication

This thesis is Dedicated to

My Allah Gift, Lovely Family Members,

Especially Those Who Left Us,

Their Love Will Remain In My Heart Forever

ACKNOWLEDGEMENTS

I wish first to thank the merciful ALLAH Almighty for helping me to complete this work and supporting me with his blessing and unlimited care.

My sincere gratitude to the soul of **Prof. Dr. Hassan Abd El-Halim Hassan Amer**, Prof. of Biochemistry and Molecular Biology. Faculty of

Veterinary Medicine - Cairo University, for his Influential imprint in the

present study and his association in supervision. But he couldn't complete

this work with us as he is gone, God has mercy on his great soul

It is great pleasure to me to record all meaning of indebtedness express my sincere gratitude for the kindness and encouragement to my scientific guide **Prof**. **Mohamed El Hady**, Prof of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine — Cairo University, under whose stimulating, continuous advises and constructive criticism this work was carried out. I heartily thank him very much for this valuable help.

A special Gratitude must be offered to **Prof. Dr. Marwa Ibrahim** Prof. of Biochemistry and Molecular Biology. Faculty of Veterinary Medicine - Cairo University offering me much Scientifically, financially and morally in the most difficult times I have been through, She's always a sister and giving me can't be written in words All love and respect for her kindness and liberality.

Deep thanks to **Prof. Dr. Khaled Naser**, Prof. of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine - Cairo University, for his great help during the experiment of this study.

Sincere thanks should be conferred to. **Dr. Rehab Mohamed El Helw**, Assistant Professor of Microbiology Faculty of Veterinary Medicine
- Cairo University for her precious time and her supervision in the Microbiological practical part.

Deep grateful to **Dr.**, **Mohammed Refaat**, Lecturer of Pathology Faculty of Veterinary Medicine - Cairo University for his help in the Pathology practical part.

Thanks to all staff members Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine - Cairo University, for giving a hand wherever needed and their help during the practical part of the present work.

Nessma Hassan

CONTENT

1- Introduction	1
Aim of work	3
2- Review of literature	
2.1. Probiotics	4
2.2. mammalian Target of Rapamycin gene	7
2.2.1 Mammalian target of rapamycin structure	8
2.2.2. Role of mTOR	9
2.2.2.1. Cell growth	9
2.2.2.2. Hormonal role	11
2.2.2.3. Stress factor and cellular energy role	11
2.2.2.4. Nutritional regulation	12
2.3. histone-lysine N-methyltransferase Smyd	13
2.3.1. Mechanism of symd1	16
2.4. Toll-like receptors (TLR):	17
2.4.1 TLRs Importance:	19 20
2.5. NBN gene	20
3- Published paper	22
4- Discussion	
4.1. Total Protein level	35
4.2. Triglycerides and cholesterol levels	36
4.3. Uric acid	37
4.4. Microbial count	38
4.5 carcass characteristics	40
4.6. Body weight	41
4.7. mTOR transcription level	42
4.8. SMYD1 transcription level	44
4.9. Toll-like receptors transcription level	44
4.10. NBN transcription level	45

5. Conclusion	46
6- Summary	47
7- References	54
Arabic summary	
Arabic Abstract	

LIST OF ABBREVIATIONS

4E - BP	4E – Binding Protein	
AdoMet/ SAM	S.Adenosyl Methionine	
AGP	Antimicrobial Growth Promoter	
AMPK	Adenosine Monophosphate – Activated Protein	
	Kinase	
AP - 1	Activator Protein 1	
BW	Body weight	
CTBP	C.Terminal Binding Protein	
CXCL	Chemokines	
DAMP	Damage Associated Molecular Pattern	
DC	Dentritic Cell	
DEPTOR	DEP domain Containing Mtor Interacting Protein	
EIF4E - BP1	Elongation Factor 4E. Binding protein 1	
ELF	Elongation Factor	
ERK	Extracellular Signal – Regulated Protein Kinase	
EU	European Union	
FCR	Feed Conversion Rate	
FKBP	FK 506 Binding Protein	
FRAP	FKBP- Rapamyain Associated Protein	
GIT	Gastrointestinal Tact	
GPCR	G - Protein Coupled Receptors	
HMTase	Histone Methyltransferase	
IFN	Interferon	

IFRF3	Interferon Deciderony Fractor 2
	Interferon Regulatory Factor 3
IGF - 1	Insulin-Like Growth Factor 1
IL	Interleukin
IRAK	IL – 1R Associated Protein Kinases
IRS1	Insulin receptor substrate 1
MAF1	Repressor of RNA polymerase III
MAP	Mitogen-Activated Protein Kinase
MEK	Mitogen-activated protein kinase
MLST8	Mammalian Lethal With Sec 13 Protein 8
MRF	Muscle Regulatory Factors
MSIN1	Mammalian Stress Activated Map Kinase
	Interacting Protein 1
MSTN	Myostatin
mTOR	Mammalian Target of Rapamycin
MyoD	Myogenic Differentiation Antigen
MyoG	Myogenin
NBN	Nibrion
NE	Necrotic Enteritis
NF - KB	Nuclear Factor Kappa B
NK	Natural Killer
PAMP	Pathogen Associated Molecular Pattern
PDK1	Prosphoinositide Dependent Protein Kinase 1
PRAS40	Proline Rich Akt Substrate
PXLXP	Proline – Rich Motif
RAPTOR	Regulatory Associated Protein of Mtor
	regulatory responded frotom of fixed

REDD	Regulated in development and DNA Damage
	Response Protein 1
RHEB	Ras Homolog Enriched in Brain
RICTOR	Rapamyain – Insensitive Companion of Mtor
S6K1	Ribosomal protein S6 kinase 1
SCFA	Short Chain Fatty acid
TLR	Toll Receptor
TPR	Tetratri coPeptide Repeat
TRAF6	TNF Receptor Associated Factor 6
TSC	Tuberous Sclerosis Complex

INTRODUCTION

Feed additives are compounds added to the feed to improve the nutrients' efficacy and their effects on poultry performance **Ashour** *et al.* (2020).

The wide range of beneficial effects of feed additives and nutritional supplements such as boosting growth and production, immunological strengthening, and health protection, are progressively becoming increasingly important in the chicken industry, as well as in healthcare systems **Abd El-Hack** *et al.* (2020). Antibiotics, prebiotics, probiotics, synbiotics, oligosaccharides, organic acids and enzymes are among the feed additives used in poultry feed **Bin-Jumah** *et al.* (2020).

Antibiotics have been applied as growth enhancers in animal feed over the past 50 years in European Union member states. Antimicrobial growth promoters (AGPs) were banned in the European Union (EU) in January 2006 Vahdatpour and Babazadeh (2016) to prevent the development of resistance and remove drug residues from food. Drug residues can induce allergic reactions, antibiotic resistance, cancer, and a variety of other health problems Hamid *et. al.* (2019).

Necrotic enteritis (NE) is one of several diseases that have been spread as a result of the antibiotics use ban. NE is one of the most costly diseases in the poultry sector caused by *Clostridium perfringens*, causing high losses among affected broilers, bodyweight loss, and increased therapy costs.

It's critical to look for antibiotic alternatives to increase broiler performance and gut health. El-Sheikh et al. (2019).