

# بسم الله الرحمن الرحيم

 $\infty\infty\infty$ 

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد



# DEVELOPMENT OF EXISTING WATER TREATMENT PLANT USING DYNAMIC UP FLOW SAND FILTER

## A Thesis

Submitted to the Faculty of Engineering Ain Shams University for the Fulfillment of the Requirement of M.Sc. Degree In Civil Engineering

#### Prepared by

## ENG. ESRAA MAHMOUD AHMED EL-TAHER

B.Sc. in Civil Engineering, June 2018 Faculty of Engineering, Ain Shams University

## **Supervisors**

#### Prof. Dr. MOHAMED EL HOSSIENY EL NADI,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

#### Prof. Dr. ENAS SAYED AHMED WAHB,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

## Dr. Sayed Ismail Ali Ahmed,

Associate professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

2022



# DEVELOPMENT OF EXISTING WATER TREATMENT PLANT USING DYNAMIC UP FLOW SAND FILTER

# A Thesis For The M.Sc. Degree In Civil Engineering (SANITARY ENGINEERING)

by

#### ENG ESRAA MAHMOUD AHMED EL-TAHER B.Sc.

in Civil Engineering, June 2018 Faculty of Engineering, Ain Shams University

#### THESIS APPROVAL

**SIGNATURE** 

Date: ---/-2022

# 

EXAMINERS COMMITTEE

ii

# **DEDICATION**

I wish to dedicate this work to whom suffered to educate, prepare, build capacity and help myself to be as I am,

#### TO MY FATHER SOUL & MY MOTHER

Also, thanks

#### TO MY BROTHERS

for their encouragement and support to complete this work.

#### **STATEMENT**

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from October 2013 to May 2018.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

Date:- ---/-- /2022

Signature:- -----

Name:- Esraa Mahmoud Ahmed El-Taher

#### **ACKNOWLEDGMENT**

The candidate is deeply grateful to Prof. Dr. Mohamed El Hosseiny Abdel Rhman EL Nadi, Professor of sanitary and Environmental Engineering, Faculty of Engineering, Ain Shams University, for suggesting the problem, help, encourage, co-operation sponsoring and patient advising during preparation of this work.

Also, great thanks to **Prof. Dr. Enas Sayed Ahmed Wahb**, Professor of sanitary and Environmental Engineering, Ain Shams University, for her help, and co-operation during the preparation of the study.

And thanks to **Dr. Sayed Ismail Ali Ahmed,** Associate Professor of sanitary and Environmental Engineering, Ain Shams University, for her help, and co-operation during the preparation of the study.

Also, very grateful to the sanitary engineering staff and the laboratory personnel Faculty of Engineering, Ain Shams University for their encouragement and support during thesis preparation.

Deep thanks to the Marj(Syracuse) Water Treatment plant Manager and staff and also, the laboratory personnel for their encouragement, help and support during thesis experimental preparation.

## **ABSTRACT**

NAME :- ESRAA MAHMOUD AHMED EL-TAHER

Title :-"DEVELOPMENT OF EXISTING WATER

TREATMENT PLANT USING DYNAMIC

UP FLOW SAND FILTER".

**Faculty**: Faculty of Engineering, Ain Shams University.

Specialty: - Civil Eng., Public Works, Sanitary Eng..

**Summary:-**

This thesis discusses the Dyna-sand filter feasibility to be applied with water variable solids loads to check its applicability for both water and wastewater treatment plants also for agricultural drains water treatment plants and check its realability to be applied as direct filtration and Study the probability to development existing water treatment plants using dyna-sand filter to increase the plant productive capacity with minimum civil work and cost Lab scale pilot was applied under sensytic water with variable solid load to determine its maximum removal efficiency with different filtration rates. all measurement was made according to American standard methods for water and wastewater Examinations. All measurements made on equipment existing in sanitary engineering laboratory in faculty of engineering, Ain Shams University The study resulted the system applicability against all applied variable solid load between TSS (50-250ppm) with variable rate of filtration between (200-500m3/m2/d) with inversely proportional between them, with removal ratio variable between (85% up to 95%).

The feasibility of the system to be applied for up grading the existing water treatment plants by replacing the mechanical equipment of rapid sand filter with dyna sand mechanical equipment that increase the area production by (2-3) times the of existing plants and decrease the required cost for constructing new plants to 10%.

#### **Supervisors**

Prof. Dr. MOHAMED EL HOSSIENY EL NADI, Prof. Dr. ENAS SAYED AHMED WAHB,

Dr. Sayed Ismail Ali Ahmed,

#### **KEY WORDS**

Water supply Water treatment plant Filtration Dynamic sand filter

# TABLE OF CONTENTS

|                                     | Page     |
|-------------------------------------|----------|
| COVER                               | i        |
| THESIS APPROVAL                     | ii       |
| DEDICATION                          | iii      |
| STATEMENT                           | iv       |
| ACKNOWLEDGEMENT                     | v        |
| ABSTRACT                            | vi       |
| TABLE OF CONTENTS                   | vii      |
| LIST OF FIGURES                     | X        |
| LIST OF TABLES                      | xii      |
| CHAPTER I: INTRODUCTION             |          |
| 1.1. GENERAL                        | 1        |
| 1.2. PROBLEM IDENTIFICATION         | 1        |
| 1.3. OBJECTIVES OF CURRENT RESEARCH | 2        |
| 1.4. SCOPE OF WORK                  | 2        |
| 1.4.1 EXPERIMENTAL WORK             | 2        |
| 1.4.2 ANALYTICAL WORK               | 2        |
| 1.5. THESIS ORGANIZATION            | 3        |
| CHAPTER II: LITERATURE REVIEW       |          |
| 2.1. INTRODUCTION                   | 4        |
| 2.2. WATER TREATMENT METHODS        | 5        |
| 2.2.1 SCREENS                       | 6        |
| 2.2.2 AERATION & PREOXIDATION       | 6        |
| 2.2.3 COAGULATION AND FLOCCULATION  | 7        |
| 2.2.4 AIR FLOTATION                 | 10       |
| 2.2.5 SEDIMENTATION                 | 10<br>11 |
| 2.2.5.1 PLAIN SEDIMENTATION         | 11       |
| 2.2.5.2 CHEMICAL PRECIPITATION      | 13       |
| 2.2.6 WATER FILTRATION              | 15<br>16 |
| 2.3 CLASSIFICATION OF FILTRATION    | 16<br>17 |
| 2.3.1 GRANULAR MEDIA                | 17       |
| 2.3.1.1 SAND                        | 18<br>18 |
| 2.3.1.2 GRAVEL                      | 18<br>19 |
| 2.3.1.3 GRANET                      | 19       |

| 2.3.1.4 | DIATOMACEOUS EARTH                                  | 20 |
|---------|-----------------------------------------------------|----|
| 2.3.1.5 | GREEN SAND                                          | 20 |
| 2.3.1.6 | COAL                                                | 21 |
| a.      | ANTHRACITE                                          | 21 |
| b.      | COKE COAL                                           | 23 |
| c.      | ACTIVATED CARBON                                    |    |
| 2.3.2   | TEXTILE MEDIA                                       | 23 |
| 2.3.2.1 | NATURAL TEXTILE FIBERS                              | 24 |
|         | a. COTTON                                           | 25 |
|         | b. LINEN                                            | 25 |
|         | c. JUTE                                             | 25 |
|         | d. SILK                                             | 26 |
|         | e. WOOD                                             | 26 |
|         | f. ALPACA                                           | 26 |
| 2222    | g. MOHAIR                                           | 27 |
| 2.3.2.2 | ARTIFICAL TEXTIAL FABRICS                           | 27 |
|         | a. POLYETHYLENE PLASTIC MESH b. POLYESTER(PES) MECH |    |
|         | c. POLYAMIDE(NYLON) MECH                            | 28 |
|         | d. POLY PROPYLENE(PP) MECH                          | 29 |
|         | e. WOVEN FABRICS                                    | 29 |
|         | f. WOVEN YARN FABRICS                               | 29 |
|         | g. SYNTHETIC MONO FILAMENT FABRICS                  | 30 |
|         | h. NON WOVEN FABRICS                                | 30 |
|         | i. WOOL RESINMEDIA                                  | 30 |
|         | j. FELTS                                            | 31 |
|         | k. MELTSPUM MATERIALS                               | 31 |
|         | MEMBRANE MEDIA                                      | 31 |
|         | MACROFILTRATION                                     |    |
|         | MICROFILTRATION                                     | 33 |
|         | ULTRAFILTRATION                                     | 33 |
|         | NANOFILTRATION                                      | 34 |
|         | REVERSE OSMOSIS                                     | 35 |
| 2.4 FA  | ACTORS AFFCTING FILTRATION                          | 35 |
| 2.4.1   | RATEOF FILTRATION                                   | 35 |
| 2.4.2   | MEDIA PROSITY                                       | 37 |
| 2.4.3   | WATER HEAD BEFORE MEDIA                             | 38 |
| 2.4.4   | HEAD LOSS                                           | 38 |
| 2.4.5   | MEDIA TYPE PROPERTES                                | 38 |
| 2.5 CI  | LEANING MECHANISM                                   | 39 |
| 2.5.1   | SCRAPING THE TOP LAYER OF MEDIA                     | 39 |
| 2.5.2   |                                                     | 40 |
|         | MOVING MEDIA                                        | 40 |