

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

Assessment of the serum paraoxonase1 level and its relation to total oxidant status and disease activity in vitiligo patients

AThesis

Submitted for partial fulfillment of Master degree in Dermatology and Venereal Disease

By

Haiam Mahmoud Thakeb Yassin

M.B.B.Ch, Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Hanan Mohamed Saleh

Professor of Dermatology and Venereal diseases Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Marwa Yassin Soltan

Assistant Professor of Dermatology and Venereal disease Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2022

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work,

My deepest gratitude to **Prof. Dr. Hanan Mouhamed Saleh,** Professor of Dermatology and Venereal diseases,
Faculty of Medicine, Ain Shams University, for her valuable
guidance and expert supervision, in addition to her great deal of
support and encouragement. I really have the honor to complete
this work under her supervision.

I would like to express my great and deep appreciation and thanks to Assist. Prof. Dr. Marwa Yassin Soltan, Assistant Professor of Dermatology and Venereal disease, Faculty of Medicine, Ain Shams University, for her meticulous supervision, and her patience in reviewing and correcting this work.

🔈 Haiam Mahmoud Thakeb Yassin

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	
List of Figures	
1. Introduction	
2. Aim of the Work	4
3. Review of Literature	
3.1.Vitiligo	5
3.1.1.Epidemiology:	6
3.1.2.Pathogenesis:	8
3.1.3.Classification of vitiligo:	17
3.1.4.Diagnosis of vitiligo:	21
3.1.5.Differential Diagnosis	22
3.1.6.Treatment of vitiligo:	23
3.2. Paraoxonase-1	35
3.2.1.PON1 Structure:	35
3.2.2.Synthesis:	36
3.2.3.Function:	37
3.2.4.Paroxonase1 role in systemic diseases:	37
3.2.5. Role of (PON1) in skin disesses	41
4. Patients and Methods	43
5. Results	55
6. Discussion	71
7. Summary	78
8. Conclusion	82
9. Recommendation	83
10. References	84
Arabic Summary	

LIST OF ABBREVIATIONS

466r. Full-term

ARE : Arylesterase

BSA : Body surface area

CAT : Catalase

CHD : Coronary heart disease

DAMPS : Damage-associated molecular pattern

DCS : Dendretic cells

DHC: dihydrocoumarin

DM : Diabetes mellitus

DS : Doner site

ELISA : Enzyme-linked Immunosorbent Assay

ER : Endoplasmic reticulum

GWA : Genome-wide association

HDL : High-density lipoprotein

HSP : heat-shock proteins

IFN : Interferon gamma

IL: Interleukin

LDL : Low-density lipoprotein

MBEH : Monobenzyl ether of hydroquinone

MPO : Myeloperoxidase

NB : Narrow band

NCES : Non cultured epidermal suspention

NK : Natural killer

NSV : Non-segmental vitiligo

OMP : Oral mini-pulse corticosteroid therapy

OSI : oxidative stress index

PL : Polypodium leucotomos

PON : Paraoxonase

PON1 : Paraoxonase-1

RA : Rheumatoid artherities

ROS : Reactive oxygen species

RS : Recipient site

SD : Standard deviation

SPSS : Statistical Package for Social Science

SV : Segmental vitiligo

TAC : Total antioxidant capacity

TAS : total antioxidant status

TCS : Topical corticosteroids

TOS : Total oxidant status

UPR : Unfolded protein response

UV : Ultra violate

UVB : Ultraviolet B

LIST OF TABLES

Table No	. Title	Page	No.
Table (1):	Socio-demographic characters of study participants.		56
Table (2):	Clinical characteristics of vitiligo di among the included patients		58
Table (3):	Comparison between vitiligo patient healthy controls regarding PON1 selevel and TOSL serum level.	serum	59
Table (4):	ROC curve for PON and TOS leve detection of vitiligo disease:		62
Table (5):	Comparison between active and active vitiligo as regard TOS leve PON1 level	1 and	64
Table (6):	Validity of PON1 Level and TOS le detection of vitiligo disease		66
Table (7):	Correlation between PON1 level and level, VIDA and VETI score in pagroup	tients	68

LIST OF FIGURES

Figure N	o. Title	Page No.
Figure (1):	Non-segmental vitiligo	18
Figure (2):	Rule of nines in burn assessment	48
Figure (3):	Boxplot chart showing high serum of PON1 in controls compared to c	
Figure (4):	Boxplot chart showing the inc TOS levels in cases compar- controls.	ed to
Figure (5):	ROC curve for PON1 level among and controls	
Figure (6):	ROC curve for TOS level among and controls	
Figure (7):	Boxplot chart showing sign difference between active and non vitiligo patients regarding PON1 lev	-active
Figure (8):	Boxplot chart showing sign difference between active and non vitiligo patients regarding TOS level	-active
Figure (9):	ROC curve for PON1 level discrimination of patients with active and patients with non-active vitiligo	vitiligo
Figure (10):	ROC curve for TOS level in discrin of patients with active vitiligo and with non-active vitiligo	patients

Figure (11):	Scatter plot showing correlation between PON1 level and TOS level in patients group.	69
Figure (12):	Scatter plot showing correlation between PON1 level and VIDA score in patients group.	69
Figure (13):	Scatter plot showing correlation between TOS level and VIDA score in patients group.	70
Figure (14):	Scatter plot showing correlation between TOS level and VETI score in patients group	70

Assessment of the Serum Paraoxonase1 Level and its Relation to Total Oxidant Status and Disease Activity in Vitiligo Patients

Hanan Mohamed Saleh, Marwa Yassin Soltan, Haiam Mahmoud Thakeb Yassin

Dermatology and Venereal diseases Department, Faculty of Medicine, Ain Shams University

Corresponding Author: Haiam Mahmoud Thakeb Yassin

Phone No.: (+2) 01063040769

E-mail:

ABSTRACT

Background: Vitiligo is characterized by white macules and patches, whose size increases over time, due to the loss of melanocytes. It can appear at any time, and it significantly impairs the patients' quality-of-life. Vitiligo is a multifactorial disorder due to genetic and environmental factors. One of the important hypotheses in the pathogenesis of vitiligo is the oxidative stress hypothesis, which is based on the reality of the formation of some toxic metabolites throughout pigment biosynthesis. Human paraoxonase-1 (PON1) is a Ca²⁺ dependent esterase synthesized in the liver. Reduced serum PON1 activity has been reported to be associated with some diseases under oxidative stress and inflammation conditions.

Aim of the Work: The aim of the work was to evaluate the serum level of paraoxonase1 in patients with vitiligo and its relation to total oxidant status and disease activity in vitiligous patients.

Patients and Methods: This is a case control study which included 48 vitiligo patients and 48 ageand sex-matched controls. The patients recruited from the Outpatient Dermatology Clinic at Ain Shams University Hospitals during the period from August 2020 till March 2021. Serum level of paraoxonase1 (PON1) and total oxidant status (TOS) where assessed by ELISA technique.

Results: We observed a statistically significant higher oxidative stress reflected by the high serum TOS levels among the vitiligo compared to controls. This finding supports the aforementioned hypothesis and it also came in accordance with the observations of high oxidative stress state in vitiligo patients which was repeatedly reported in many studies. Furthermore, we also reported the significant inverse relation between PON1 levels and the oxidative stress reflected by the serum TOS levels in vitiligo patients. This reflected the reduced protective antioxidant mechanisms in vitiligo patient making them more vulnerable to oxidative stress

Conclusion: Oxidative stress may play an important role in the pathogenesis of vitiligo. The finding of a PON1 decrease in vitiligo patients emphasises the underlying hypothesis in the progression of the disease, and it can highlight the effect of free radicals and leading oxidative damage in vitiligo disease. However, further, larger studies are necessary to confirm our results.

Keywords: Serum Paraoxonase1 Level; Total Oxidant Status; Vitiligo

1. Introduction

vitiligo is an acquired pigmentary disorder of unknown etiology, affecting approximately 1 % of the world population, without predilection for race or sex. It is characterized by white macules and patches, whose size increases over time, due to the loss of melanocytes. Vitiligo can appear at any time, and it significantly impairs the patients' quality-of-life (*Taieb et al.*, 2013).

Multiple pathogenetic factors have been proposed to clarify the etiology of vitiligo, including the neural theory, genetic predisposition, impaired anti-oxidative defense and the autoimmune theory (*Alikhan et al.*, 2011).

One of the important hypotheses in the pathogenesis of vitiligo is the oxidative stress hypothesis, which is based on the reality of the formation of some toxic metabolites throughout pigment biosynthesis (*Yesilova et al.*, 2012).

Oxidative stress may play an essential role in activating subsequent autoimmune responses related to vitiligo (*Xie et al.*, 2016). Reactive oxygen species (ROS) are induced by multifactors. The stressed melanocytes generate damage-associated molecular patterns (DAMPs) or autoantigens that then initiate innate immunity and adaptive immunity, leading to the

dysfunction and death of melanocytes via an inflammatory cascade (*Richmond et al.*, 2013).

Reactive oxygen species (ROS) can damage key lipid, protein, and enzyme systems involved in melanogenesis, and they also impair protein-repair mechanisms (*Glassman*, 2011). Apart from direct or indirect evidence of elevated ROS in vitiligo patients, there is also evidence of deficient antioxidants (*Sravani et al.*, 2009).

Measurement of total oxidant status (TOS), using a recently established method, better reflects the global effects of various oxidants in an organism (*Esen et al.*, 2012).

Paraoxonase (PON1) is an antioxidant enzyme and a member of the PON enzyme family, comprising PON-1, PON-2, and PON-3 that degrade bioactive oxidized lipids and are thus antiatherogenic (Levy et al., 2019). PON-1, an esterase carried by high-density lipoprotein, is known to exert a protective effect against oxidative damage of cells lipoproteins playing anti-inflammatory and an antiatherogenic role (Mackness and Mackness, 2015). PON1 mRNA is restricted to adult kidney, liver, and colon and fetal liver, whereas PON-2 mRNA is more widely distributed in adult human brain, heart, kidney, spleen, liver, colon, lung, small intestine, muscle, stomach, testis, placenta, salivary,

thyroid and adrenal glands, pancreas, skin, and bone marrow (*Mackness et al.*, 2010).

Paroxonase1 (PON1) has two main roles: detoxifying organophosphate compounds, such as paraoxon, and protecting low-density lipoprotein by hydrolysis of lipid peroxides (*Atasov et al.*, 2015).

Reduced serum PON1 activity has been reported to be associated with some diseases under oxidative stress and inflammation conditions (*Esen et al.*, 2015). Antioxidants have a protective role in the development of some autoimmune diseases like psoriasis, vitiligo, and alopecia aerate (*Ramadan et al.*, 2013). Paraoxonase 1 can be used as an indicator in determining the existence of oxidative stress in the pathogenesis of vitiligo diseases (*Yesilova et al.*, 2012). In the view of the role of oxidative stress in vitiligo and the role of PON1 as antioxidant, we thought to investigate the total oxidant status(TOS) and (PON1) levels in vitiligo and its relation to disease activity.