

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

Clinical Characteristics of Anti-Myelin Oligodendrocyte Glycoprotein Antibody among Aquaporin -4 Negative Neuromyelitis Optica Spectrum Disorders in Egyptian Patients

Thesis
Submitted for Partial Fulfilment of Master
Degree in Clinical Pathology

By *Yasmin Ashraf Mohamed MB, Bch, Ain Shams University*

Under supervision of **Prof/ Salwa Ibrahim Bakr**

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Prof/ Nermeen Tayseer Aly

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Prof/ Dina Abdel Gawad Zamzam

Assistant Professor of Neuropsychiatry Faculty of Medicine - Ain Shams University

Dr/ Sara Ibrahim Abdelfattah Taha

Lecturer of Clinical Pathology Faculty of Medicine - Ain Shams University

Ain Shams University Faculty of medicine 2022

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof/ Salwa Ibrahim Bakr,**Professor of Clinical Pathology - Faculty of MedicineAin Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof/ Nermeen Tayseer Aly,** Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof/ Dina Abdel Gawad Zamzam,** Assistant Professor of
Neuropsychiatry, Faculty of Medicine, Ain Shams
University, for her great help, active participation and
guidance.

I wish to introduce my deep respect and thanks to

Dr/ Sara Ibrahim Abdelfattah Taha, Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her kindness, supervision and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Yasmin Ashraf Mohamed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of abbreviations	3
Introduction	6
Aim of the Work	
Review of Literature	
Neuromyelitis Optica Spectrum Disorders	9
Aquporin-4	33
Anti-myelin Oligodendrocytic Glycoprotein (N	
Subjects and Methods	
Results	
Case Presentation	69
Discussion	72
Summary and Conclusion	82
References	84
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Comparison between symptomatic ep	oisodes
	between anti-AQP-4-Ab positive N	MOSD
	patients and anti-MOG-Ab p	ositive
	patients	52
Table (2):	Description of demographic data, of	
	characteristics and anti-MOG-Ab res	sults of
	NMOSD patients.	62
Table (3):	Descriptive statistics of disease mod	
	drug taken by the NMOSD patier	·
	between attacks	
Table (4):	Comparison between the anti-M	
1 able (4).	_	
	seropositive and seronegative pa	
4.5	regarding their EDSS	
Table (5):	Comparison between the anti-M	
	seropositive and negative patient	s and
	clinically studied parameters	68

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Immunopathogenesis of neuro optica spectrum disorders	•
Figure (2):	Mammalian AQPs expression among tissues	
Figure (3):	Anti-MOG-antibodies when bind to I surface lamellae of myelin sheath an immune response and releasing I	eliciting
Figure (4):	Bar chart shows risk factor dist among the included patients	
Figure (5):	Bar chart shows the number of relative the 13 relapsed patients included study.	in the
Figure (6):	Comparison between the anti-I seropositive and negative patients rethe EDSS	egarding

List of Abbreviations

Full term Abb.

Abs	Antibodies
ADEM	Acute disseminated encephalomyelitis
ANA	Anti-nuclear antibody
APC	Antigen presenting cell
AQP	Aquaporin
ARR	Annualized relapse rate
BAFF	B- cell activating factor
BBB	Blood brain barrier
CBA	Cell based assay
CCL	Chemokine ligand
CCR	Chemokine receptor
CD	Cluster of differentiation
СНО	Chinese hamster ovary
CNS	Central nervous system
CO2	Carbon dioxide
CRMP5	Collapsing response-mediator protein-5
CSF	Cerebrospinal fluid
CV	Coefficient of variation
DMD	Disease modifying drug
DNA	Deoxyribonucleic acid
EDTA	Ethylenediamine tetra-acetic acid
EDSS	Expanded disability status scale
EGFP	Enhanced green fluorescent protein
ELISA	Enzyme-linked immunosorbent assay
FACS	Fluorescence-activated cell sorting
Fc	Fragment crystallizable
FIPA	Fluorescence-based immune precipitation assay
FITC	Fluorescein isothiocyanate
FL	Full length
GFAP	Glial fibrillary acidic protein
HEK	Human embryonic kidney
HLA	Human leukocyte antigen
ICAM	Intercellular adhesion molecule
ICC	Immunocytochemistry

List Of Abbreviations

ICCF	Fluoroimmunocytochemistry	
IFN	Interferon	
Ig	Immunoglobulin	
IHC	Immunohistochemistry	
IHC-C	Conventional immunohistochemistry	
IHC-F	Fluoro-immunohistochemistry	
IIF	Indirect immunofluorescence	
IL	Interleukin	
IVIG	Intravenous immunoglobulin	
kDa	ÿ	
LETM	Longitudinally extensive transverse myelitis	
MAC	Membrane attack complex	
MBP	Major basic protein	
MHC	Major histocompatibility complex	
MMP	Matrix metalloproteinase	
MOG	Myelin oligodendrocyte glycoprotein	
MRI	Magnetic resonance imaging	
MS	Multiple sclerosis	
NF	Neurofilament	
NH3	Ammonia	
NK	Natural killer	
NMDA	N-methyl D-aspartate	
NMDAR	N-methyl-D-Aspartate receptor	
NMO	Neuromyelitis optica	
NMOSD	Neuromyelitis optica spectrum disorder	
OAPs	Orthogonal array of particles	
OSMS	Optic spinal multiple sclerosis	
PBS	Phosphate buffered saline	
PD1	Programmed cell death protein-1	
PLEX	Plasma exchange	
PLP	Proteolipid	
PTPN22	Protein tyrosine phosphate non-receptor type 22	
RIPA	Radio-immuno-precipitation assay	
RNA	Ribonucleic acid	
Rpm	Revolutions per minute	
SL	Short length	
SLE	Systemic lupus erythematosus	
S100B	S100 calcium binding protein B	
SPSS	Statistical Package for Special Sciences	

List Of Abbreviations

SSA	Sjogren syndrome A
SSB	Sjogren syndrome B
TGF-β	Transforming growth factor beta
Th	T-helper
VCAM	Vascular cell adhesion molecule
VGEF	Vascular endothelial growth factor
WB	Western blot

<u>Title</u>

Clinical Characteristics of Anti-Myelin Oligodendrocyte Glycoprotein Antibody among

Aquaporin -4 Negative Neuromyelitis Optica Spectrum Disorders in Egyptian Patients

Running title: Anti-MOG Antibodies in NMOSD

Yasmine A. Mohamed ¹, Salwa I. Bakr ¹, Nermeen T. Fouad ¹, Dina Zamzam ², Sara I. Taha ¹

1. Department of Clinical Pathology, Immunology, Faculty of Medicine, Ain Shams

University, Cairo, Egypt.

2. Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.

Corresponding author:

Yasmine Ashraf Mohamed

Department of Clinical Pathology, Immunology, Faculty of Medicine, Ain Shams University,

Abbasiya, Cairo, Egypt. Postal Code: 11835

Email: yasminashraf919@gmail.com

Phone no.:(+20) 1062388773

ABSTRACT:

Background: Neuromyelitis optica spectrum disorder (NMOSD) is a central nervous system inflammatory disease that was once thought to be a form of multiple sclerosis (MS); it now has independent clinical, pathological, and immunological characteristics because of the discovery of anti-aquaporin-4 (anti-AQP4) and anti-myelin oligodendrocyte glycoprotein (anti-MOG) antibodies. Objectives: The goal of our research was to determine the prevalence of anti-MOG antibodies in anti-AQP4 seronegative NMOSD Egyptian patients and link their presence with NMOSD clinical characteristics and disease-induced disability. Methods: This cross-sectional study included 40 anti-AQP-4 antibody negative NMOSD patients, 6 children and 34 adults. They were screened for anti-MOG antibodies by the indirect immunofluorescence technique. Results: Of all included NMOSD patients, only 7.5% (n=3) were positive for anti-MOG antibodies and had significantly higher disability scores compared to seronegative patients (p=0.021). The presence of anti-MOG antibodies was not significantly associated with patients' age (p=0.696), gender (p=0.232), type (p=0.488) or frequency of relapse (p=0.488), family history of consanguinity (p=0.211), family history of autoimmune disease (p=0.608), nor with smoking (p=0.608). Conclusions: Anti-MOG antibody seropositivity in anti-AQP4 negative NMOSD patients could be used as a primary indicator of disease-related impairment in the future.

Keywords:

Anti-Myelin Oligodendrocyte Glycoprotein; Aquaporin-4; Disability; Neuromyelitis optica spectrum disorder

1. INTRODUCTION:

Neuromyelitis optica spectrum disorder (NMOSD) is a rare autoimmune demyelinating disorder of the central nervous system (CNS) with a prevalence that rarely exceeds 5 per 100,000 [1]. The disease causes disabling episodes of optic neuritis and transverse myelitis [2] associated with astrocyte death, axonal loss, perivascular lymphocytic infiltration, and vascular proliferation [3]. It is characterized by longitudinally extensive spinal cord lesions (>3 vertebral segments) and the absence of oligoclonal IgG bands (in about 70-85% of cases) [4]. Because of the discovery of anti-aquaporin-4 (anti-AQP4) and anti-myelin oligodendrocyte (anti-MOG) antibodies in serum of NMOSD patients, it is now considered as a distinct clinical entity from multiple sclerosis (MS) [5].

AQP4 is the most abundant water channel in the mammalian CNS; it is highly expressed in the membrane of the astrocytic end-feet. Anti-AQP4 antibodies are pathogenic and primarily mediate a humoral immune neuroinflammatory response [6], leading to high complement activation [7]. Despite the development of highly sensitive and specific assays for anti-AQP-4 antibodies, up to 40% of NMOSD patients do not have these antibodies at initial presentation and during the course of the disease [8].

MOG glycoprotein is a member of the immunoglobulin superfamily; it makes up about 0.05% of total myelin proteins [2]. It is expressed on the outer lamella of the myelin sheath but not expressed nor on the thymus nor on peripheral organs, making it more likely to be immunogenic than other CNS myelin proteins [9]. Anti-MOG antibodies trigger both encephalitogenic T-cell response and antibody-mediated humoral demyelinating response in a synergistic way [10].

Thus, anti-AQP-4 associated NMOSD is an astrocytopathy, while anti-MOG-associated inflammatory demyelinating diseases represent an oligodendropathy [8].

Clinical, biological, and immunological features of NMOSD appear to differ in patients with positive anti-MOG antibodies compared to patients with positive anti-AQP-4 antibodies [2]. In this context, we designed this study in order to discover the prevalence of anti-MOG antibodies among anti-AQP4 seronegative NMOSD Egyptian patients and to establish a link between their existence and NMOSD clinical features and disease-induced impairment.

2. METHODOLOGY:

2.1.Study design and subjects:

This cross-sectional study included 40 NMOSD patients, 6 children (age: <18 years old) and 34 adults (age: ≥18 years old), of them, 35% (n=14) were males and 65% (n=26) were females, diagnosed by clinical picture and radiological findings according to the 2015 international consensus diagnostic criteria of NMOSD [11]. They were recruited from the outpatient clinic of the Neurology Department, Ain Shams University Hospitals, Cairo, Egypt. All included patients were seronegative for antiAQP4 antibody. MS patients and those who received corticosteroids within a month before the study were excluded. This study was carried out after the approval of the ethical committee of Ain Shams University, Faculty of Medicine (FMASU M5176/2019). Before taking part in this study, all subjects signed a written informed consent form. All collected data were kept private and confidential and were solely utilized for the study's purposes.

2.2. Clinical assessment:

The neurologist examined the disability status of all participants using The expanded disability status scale (EDSS), which offers a total score on a scale ranging from 0 to 10 in 0.5-unit increments, with higher scores representing higher levels of disability. People with a high degree

of ambulatory ability are classified as levels 1.0 to 4.5, whereas those with a loss of ambulatory capacity are classified as levels 5.0 to 9.5 [12].

2.3. Sample collection and anti-MOG antibody analysis:

Laboratory work was conducted in the Clinical Pathology Department, Ain Shams University Hospitals, Cairo, Egypt. From each participant, 3 ml venous blood was collected by aseptic venipuncture into a serum separation vacutainer tube. Blood samples were allowed to clot completely then were centrifuged at 3000xg for 10 minutes. Separated sera were collected and stored in the freezer (-80°C) until analysis. Anti-MOG IgG antibody detection was done using indirect immunofluorescence slides (EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany, order no.: FB 1156-1005-50) according to manufacturer's instructions. The slides were assessed with a fluorescence microscope (Olympus CX33 Biological Microscope, Tokyo, Japan) using a 40 magnification power lens where positive reactions produced a flat, smooth to coarse-granular fluorescence of the cell with an accent of the cell membrane. The area of the cell nucleus was only slightly stained. **Figure 1**

2.4. Statistical analysis:

The data were coded and analyzed using Statistical Package for Special Sciences (SPSS) software computer program version "V. 23.0" (IBM Corp., USA, 2015). Description of quantitative nonparametric data was carried out by using median, and IQR and quantitative parametric data were carried out by mean \pm SD. Description of qualitative data was presented as numbers and percentages. In comparison, the Mann-Whitney test was used for quantitative data, while the Chi-square test was used to compare qualitative data. Significance level was set at *p*-value < 0.05.