

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

Long-Term Outcomes of Percutaneous Trans-catheter Device Closure of Atrial Septal Defects During Teenage Life Versus Adulthood

Thesis

Submitted For Partial Fulfillment of Master Degree in Cardiology

Submitted by

Mohammad Ibrahim Abdelrahman El-sayed

M.B. B.Ch

Faculty of Medicine - Ain Shams University

Supervised by

Prof. Dr. Maiy Hamdy El Sayed

Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr. Mohammad Saber Hafez

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2022

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I would like to express my respectful thanks and profound gratitude to **Prof. Dr. Maiy Hamdy &L-Sayed,**Professor of Cardiology, Faculty of Medicine - Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Mohammad Saber Hafez**, Lecturer of Cardiology, Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Mohammad Dbrahim

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	4
Review of Literature	
Atrial Septal Defects	5
Transcatheter Closure of ASD	10
Patients and Methods	16
Results	24
Discussion	63
Limitations of the Study	70
Conclusion	71
Summary	72
References	74
Arabic Summary	

List of Abbreviations

Abb.	Full term
2D	. Two-Dimensional
	. Three-dimensional
	. Adult congenital heart disease
	. Atrial fibrillation
	. Atrial septal defect(s)
	. Atrioventricular
	. Atrioventricular septal defect
	. Body surface area
	Congenital heart defects
	Cardiac magnetic resonance imaging
	. Electrocardiogram
	. Ejection fraction
FAC	. Fractional Area Change
IART	. Intraatrial reentrant tachycardia
IEC	. Infective EndoCarditis
IVC	. Inferior vena cava
LA	. Left Atrium
L-R	. Left-to-right
LV	. Left ventricle
mPAP	. Mean Pulmonary Artery Pressure
NYHA	. New York Heart association
PA	. Pulmonary Artery
PACs	. Premature atrial complexes
PAH	. Pulmonary arterial hypertension
PAP	. Pulmonary Artery Pressure
PDA	. Patent ductus arteriosus
PFO	. Patent foramen ovale
PH	. Pulmonary hypertension

List of Abbreviations Cont...

Abb.	Full term
PS	. Pulmonary stenosis
PVD	. Pulmonary vascular disease
PVR	. Pulmonary Vascular Resistance
Q_p : Q_s	. Pulmonary to systemic flow ratio
RA	Right atrium
RAA	. Right atrial area
RBBB	. Right Bundle Branch Block
RV	. Right Ventricle
RVEDVi	. Right ventricle end diastolic volume indexed to BSA
RVESVi	. Right ventricle end systolic volume indexed to BSA
RVH	. Right Ventricular Hypertrophy
SPAP	. Systolic Pulmonary artery Pressure
SVC	. Superior vena cava
TEE	. TransEsophgyeal Echocardiography
TR	Tricuspid regurgitation
TTE	. TransThoracic Echocardiography
TV	Tricuspid valve
VSD	. Ventricular Septal Defect
WU	. Wood units

List of Tables

Table No.	Title	Page No.
Table (1):	Descriptive for demogranthropometric measure cases.	es of the studied
Table (2):	Descriptive data for diabetic cases in adult gr	hypertensive and oup25
Table (3):	Descriptive for ASD clos ECG and Holter ECG of	sure catheter data, the studied cases27
Table (4):	Descriptive for 2D parameters of the studied	echocardiographic d cases30
Table (5):	Descriptive for Dopple studied cases	er parameters of
Table (6):	Comparison between the regarding demographic cases	
Table (7):	Comparison between the regarding ASD closure castudied cases	© 1
Table (8):	Comparison between the regarding 2D echo pastudied cases	9 1
Table (9):	Comparison between the regarding Doppler particular studied cases	
Table (10):	Correlation between ag and Doppler parameters.	re and 2D ECHO46
Table (11):	Comparison between I relation to demogra- anthropometric measures	
Table (12):	Comparison between I	

List of Tables Cont...

Table No.	Title	Page No.
Table (13):	Comparison between relation to 2D parameters	
Table (14):	Comparison between relation to Doppler para	Holter results in meters52
Table (15):	Comparison between R' relation to demogra	
Table (16):	Comparison between R' relation to ASD closure	V basal diameter in catheter data54
Table (17):	Comparison between R' relation to Holter echocardiographic paran	
Table (18):	Comparison between R' relation to Doppler parameters	
Table (19):	Comparison between R (%) in relation to dem anthropometric measure	-
Table (20):	Comparison between R (%) in relation to AS	V systolic function
Table (21):	Comparison between R (%) in relation to Ho	V systolic function
Table (22):	Comparison between R	

List of Figures

Fig. No.	Title Page No.
Figure (1):	Apical 4c view showing fractional area change20
Figure (2):	Descriptive for gender of the studied cases25
Figure (3):	Descriptive for ASD closure devices used in the study
Figure (4):	Descriptive for ECG findings after ASD transcatheter closure
Figure (5):	Descriptive for Holter results after ASD transcatheter closure
Figure (6):	Descriptive for RV basal diameter of the studied cases31
Figure (7):	Descriptive for degree of TR of the studied cases
Figure (8):	Descriptive for degree of PR of the studied cases
Figure (9):	Comparison between the studied groups regarding mean weight of the studied cases35
Figure (10):	Comparison between the studied groups regarding mean height of the studied cases35
Figure (11):	Comparison between the studied groups regarding mean BSA of the studied cases36
Figure (12):	Comparison between the studied groups regarding Holter results of the studied cases
Figure (13):	Comparison between the studied groups regarding RV basal diameter of the studied cases

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (14):	Comparison between th regarding RV systolic studied cases	function of the
Figure (15):	Comparison between the regarding RA area of the	
Figure (16):	Comparison between the regarding LV EF of the st	9 1
Figure (17):	Comparison between the regarding LA volume of the	<u> </u>
Figure (18):	Comparison between the regarding E/A ratio and studied cases	E/e' ratio of the
Figure (19):	Correlation between Age (%) of the studied cases	
Figure (20):	Correlation between age volume ml/m ² of the studi	•
Figure (21):	Correlation between age E/A ratio of the studied ca	•
Figure (22):	Correlation between age ratio of the studied cases.	

ABSTRACT

<u>Aim and Objectives:</u> To evaluate the long-term follow up outcome of patients who underwent percutaneous trans-catheter closure of atrial septal defects during teenage life versus adulthood.

<u>Patients and Methods:</u> The study included 100 patients with secundum type ASD were treated by transcatheter closure of their defects. Two year after the procedure patients included in the study were subjected to thorough history taking, physical examination,12 leads surface electrocardiogram and Holter. Full 2D and Doppler echocardiographic study was performed in addition to Tissue Doppler Assessment of left ventricular function.

Results: At the 2 years follow up of transcatheter ASD closure, the RVEDD had decreased from 22.93±5.889 mm to 18±4.06 mm(P=0.000). By comparing 2D echocardiographic parameters between teenagers and adults there was a highly significant difference in RV basal diameter (P=0.004), RV systolic function (P=0.000), RA area (P=0.030). Mean PAP decreased from 18.37±4.796 mmHg to 14.77±4.75 mmHg (P=0.022). RVSP decreased from 28.9±4.425 mmHg to 15.83±4.17 mmHg (P=0.000). There was statistically significant difference regarding defect size (P=0.037), device size (P=0.038) and Holter findings (P=0.042) while there was no statistically significant difference between both groups regarding mPAP, device type and ECG. Defect size was larger in adult group ranged from 9 to 33 mm with mean \pm SD 15.57 \pm 6.57 mm than teenagers ranged from 6 to 22 mm with mean \pm SD 13.06 \pm 5.18 mm. Also, incidence of arrhythmia in adults was higher than teenagers as follows: PACs was in 7 patients (14 %) in adult group while 3 patients (6 %) had PACs in teenagers group and paroxsymal AF was found in 4 patients (8 %) in adult group while no patients in teenagers develop AF. All the patients had normal sinus rhythm before closure and no one developed arrhythmia until 1 year after closure. 50 % of the patients had normal RV size at the 2-year follow up. Regarding Doppler parameters, mitral E/A ratio (P=0.000) and lateral E/e' ratio (P=0.041) had significant difference between adults and teenagers as shown in table (8) mostly related to age. Mitral E/A ratio in adults ranged from 0.7 to 1.5 with mean \pm SD 1.06 \pm 0.20 while in teenagers ranged from 1.1 to 1.8 with mean \pm SD 1.45 \pm 0.17. Lateral E/e' ratio in adults ranged from 3 to 7.9 with mean \pm SD 5.43 \pm 1.24 while in teenagers ranged from 3 to 7 with mean \pm SD 4.94 ± 1.13 .

<u>Conclusion:</u> Transcatheter ASD closure leads to a significant improvement in heart cavity dimensions and RV function and reversal of electrical and mechanical changes. Novel parameters for assessment of RV function are promising and appear to be helpful for the assessment of RV function and its response to correction of volume.

Keywords: Atrial septal defect, arrhythmia, transcatheter closure, adults, teenagers

Introduction

Atrial septal defects (ASDs) is one of the most common types of congenital heart defects, occurring in about 25% of children. (1) ASD comprise 6–10% all congenital heart defects. Included in this group of malformations are several types of atrial communications that allow shunting of blood between the systemic and the pulmonary circulations. ASDs are the most common form of acyanotic congenital heart diseases. (2,3)

The prevalence of congenital heart diseases and ASD has increased over the past 50 years. More recent epidemiologic data suggest that ASDs occur in 1.6 per 1000 live births. The noted increase in prevalence is probably not due to an increase in disease as much as improvements in imaging modalities and training of practitioners. ⁽⁴⁾

There are 4 types of ASDs are: Ostium secundum defect (70-80%), Ostium primum defect (15-20%), Sinus venosus defect (5-10%), Coronary sinus defect (< 1%).

Patients with an ASD are often asymptomatic for many decades and often times do not present with any clinical findings.

Many ASDs go undiagnosed until adulthood; therefore, treatment, especially of large defects, is often delayed. Untreated large defects can cause exercise intolerance, cardiac dysrhythmias, palpitations, increased incidence of pneumonia, pulmonary

hypertension (PH) and increased mortality. [7] Eisenmenger syndrome is a rare, but severe complication of untreated ASDs due to vascular remodeling caused by chronic over flow (through a leftto-right shunt). [8]

Patients with smaller heart defects (less than 5 mm) might not develop any symptomology while patients with defects ranging between 5 to 10 mm will present in the fourth or fifth decade of life. (9) Patients with larger defects present sooner, in the third decade of life. (9) Patients may present with dyspnea, fatigue, exercise intolerance, palpitations or signs of right-sided heart failure. Approximately 20% of adult patients develop atrial tachydysrhythmias preoperatively.

Diagnostic imaging is important in determining the size of the defect and is crucial in determining treatment options. A transthoracic echocardiography (TTE) is the gold standard imaging modality. A TTE allows one to detect the size of the defect, understand the direction of blood flow, find associated abnormalities (involvement of the endocardial cushions and atrialventricular valves), examine the heart for structure and function, estimate pulmonary artery pressure (PAP), and estimate the pulmonary/systemic flow ratio (Qp:Qs). (9)

Patients with ASDs less than 5 mm in size frequently experience spontaneous closure of the defect in the first year of life. Defects that are greater than 1cm will most likely require medical/surgical intervention to close the defect. (10)

While surgical repair has been the mainstay of addressing these defects, more recently transcatheter (percutaneous) and hybrid approaches have been used to treat these defects effectively.

The transcutaneous percutaneous approach to ASD closure is only indicated in patients with ostium secundum defects. Surgical intervention is required for the ostium primum, sinus venosus, and coronary sinus defects.