

بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

NA		T R	ملاحظات:
4 1	6997		
	AIMSWAM	R. CIVILLE HARINA	
1	5/15/20	1992	- 1 3 m. f

بمكات وتكنولوجبارته

The Possible Therapeutic Effects of Resveratrol and/or Quercetin on Diethylnitrosamine-Induced Hepatocellular Carcinoma in Rats.

A Thesis

Submitted for the Degree of Ph. D. of Science in Zoology

By

Heba Abo Baker Youssef Ahmed

(M.Sc. Zoology Department, 2015)

Supervised By

Professor Dr. Nefissa Hussein Meky

Professor of Physiology Zoology Department, Faculty of Science Ain Shams University

Professor Dr. Hoda Gamal El-Din Salem Hegazy

Professor of Physiology Zoology Department, Faculty of Science Ain Shams University

Professor Dr. Mohamed Islam Heibashy

Professor of Physiology and Radio-Biochemistry and Head of Radio-Isotopes Applications Division Nuclear Research Centre Atomic Energy Authority

Faculty of Science
Ain Shams University
(2022)

Thesis Entitled

The Possible Therapeutic Effects of Resveratrol and/or Quercetin on Diethylnitrosamine-Induced Hepatocellular Carcinoma in Rats.

Thesis Supervisors:

Professor Dr. Nefissa Hussein Meky

Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University.

Professor Dr. Hoda Gamal El-Din Salem Hegazy

Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University.

Professor Dr. Mohamed Islam Heibashy

Professor of Physiology and Radio-Biochemistry and Head of Radio-Isotopes Applications Division, Nuclear Research Centre, Atomic Energy Authority.

Approval Sheet

Name: Heba Abo Baker Youssef Ahmed

Title: The Possible Therapeutic Effects of Resveratrol and/or

Quercetin on Diethylnitrosamine-Induced

Hepatocellular Carcinoma in Rats.

Scientific Degree: Ph. D. of Science in zoology

Approved by:

Professor Dr. Magda Sayed Hassanen Afifi

Professor of Physiology, Zoology Department, Faculty of Girls, Ain Shams University.

Professor Dr. Nadia Mohamed Said Arafa

Professor of Physiology, Egyptian Drug Authority.

Professor Dr. Nefissa Hussein Meky

Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University.

Professor Dr. Hoda Gamal El-Din Salem Hegazy

Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University.

Ain Shams University Faculty of science Zoology department

Student Name: Heba Abo Baker Youssef Ahmed

Scientific Degree: Ph. D. of Science in zoology

Department: Zoology department

Faculty Name: Faculty of science-Ain Shams University

Master's degree year: 2015

Granting Year: 2022

Thesis title: The Possible Therapeutic Effects of Resveratrol and/or

Quercetin on Diethylnitrosamine-Induced Hepatocellular

Carcinoma in Rats.

First of all, I wish to express my sincere thanks, great indebtedness and supreme gratitude to GOD to whom I relate any success in achieving any work in my life.

I wish to express my sincere appreciation, gratitude and grateful acknowledgment to **Professor Nefissa Hussein Meky**, Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University, for her suggesting and planning the work, for her stimulating, close supervision, fruitful advices, continuous encouragement during the conduction and preparation of this work from the very last to the end as well devoting her precious time in reading and criticizing the manuscript and she tided me over many difficulties throughout the work. To her, I owe great deal for sincere guidance and keen supervision.

I would like to express my deeply thankful and appreciation to the great efforts of **Professor Hoda Gamal El-Din Salem Hegazy**, Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University, and **Professor Mohamed Islam Heibashy**, Professor of physiology and Radio-Biochemistry and Head of Isotopes Applications Division, Nuclear Researches Center, Atomic Energy Authority, for their suggesting and planning this work, as well as their supervision, constructive advice, reading and criticizing the manuscript, their continuous support, encouragement, guidance and directions in this work and constructive comment. To them, I shall be forever thankful.

بِشِهُ لِسَّالِ لِجَوْزِ لِلَّحِيْنِ فِي الْمُعَالِينِ فَي الْمُعَالِينِ فَي الْمُعَالِقِ فَي الْمُعِلِّقِ فِي الْمُعَالِقِ فَي الْمُعَالِقِ فَي الْمُعَالِقِ فَي الْمُعَالِقِ فَي الْمُعَالِقِ فَي الْمُعَالِقِ فَي الْمُعَالِقِ فِي الْمُعَالِقِ فَي الْمُعِلِّقِ فَي الْمُعَالِقِ فَي الْمُعَالِقِ فَي الْمُعِلِّقِ فِي الْمُعِلِّقِي الْمُعِلِقِ فِي الْمُعِلِّقِ فِي الْمُعِلِّقِ الْمُعِلِقِ فِي الْمُعِلِقِ فِي الْمُعِلِّقِ فِي الْمُعِلِّقِ فِي الْمُعِلِّقِ فِي الْمُعِلِّقِ فِي الْمُعِلِقِ فِي الْمُعِلِقِ فِي الْمُعِلِقِ فِي الْمُعِلِقِ فِي الْمُعِلِّقِ فِي الْمُعِلِّقِ فِي الْمُعِلِقِ فِي الْمُعِلِّقِ فِي الْمُعِلِيِي الْمُعِلِي فِي الْمُعِلِي فِي الْمُعِيقِي فِي الْمُعِلِي فِي الْمُعِلِي الْمُعِلِي ا

(يَرْفَعِ اللَّهُ الَّذِينَ آمَنُوا مِنْكُمْ وَالَّذِينَ أَمَنُوا مِنْكُمْ وَالَّذِينَ أُوتُوا الْعِلْمَ دَرَجَاتٍ وَاللَّهُ بِمَا تَعْمَلُونَ خَبِير)

صدق الله العظيم سورة المجادلة اية (١١)

Contents

T' (CT 1)
-List of Tables.
-List of Figures
-List of Abbreviations
-Abstract
-Introduction
-Aim of the work
-Review of literature
1- Classification of cancers.
2- Liver cancer.
3- Liver cancer types.
4- Hepatocellular carcinoma.
4.1 Animal models of hepatocellular carcinoma
5- Tumor microenvironment and it is role in hepatocellular
carcinoma
5.1 Angiogenesis
5.2 Inflammation
5.3 Inflammation-Associated Angiogenesis
6. Hepatocellular carcinoma and coagulation disorders
7. Haemostatic abnormalities in liver disease
7.1 Platelet abnormalities
7.2 Abnormalities affecting coagulation factors
7.3 Abnormalities in coagulation inhibitors
7.4 Fibrinolytic system abnormalities.
8. Cytokines, liver disease, and the anticoagulant system
9. Phytochemicals and plant polyphenols
10. Plant polyphenols
A- Non-flavonoids
Stilbenes (trans-resveratrol)
B- Flavonoids
Flavonols (quercetin)
-Materials and Methods
-Results
-Discussion
-Summary and conclusion
-References
-Arabic summary

List of Table

Table	Title	Page
(1)	Administration effects of both diethylnitrosamine and phenobarbital on serum α -fetoprotein and liver function parameters in rats.	70
(2)	Administration effects of both diethylnitrosamine and phenobarbital on inflammation and angiogenesis markers in rats.	73
(3)	Administration effects of both diethylnitrosamine and phenobarbital on immune cells in rats.	78
(4)	Administration effects of both diethylnitrosamine and phenobarbital on platelets counts, coagulant, anticoagulant and fibrinolytic parameters in rats.	81
(5)	Effects of resveratrol and/or quercetin on serum α - fetoprotein level in HCC rat groups.	85
(6)	Effects of resveratrol and/or quercetin on serum aspartate transaminase and alanine transaminase activities in HCC rat groups.	88
(7)	Effects of resveratrol and/or quercetin on serum levels of total protein and albumin in HCC rat groups.	91
(8)	Effects of resveratrol and/or quercetin on serum lactate dehydrogenase and gamma-glutamyl transferase activities in HCC rat groups.	94
(9)	Effects of resveratrol and/or quercetin on serum alkaline phosphatase activity in HCC rat groups.	97
(10)	Effects of resveratrol and/or quercetin on serum vascular endothelial growth factor and endostatin levels in HCC rat groups.	100
(11)	Effects of resveratrol and/or quercetin on serum matrix metalloproteinase-2 and matrix metalloproteinase-9 activities in HCC rat groups.	103
(12)	Effects of resveratrol and/or quercetin on serum tumour necrosis factor- α and heparanase levels in HCC rat groups.	106
(13)	Effects of resveratrol and/or quercetin on serum interleukin- 1β and interleukin- 6 levels in HCC rat groups.	109
(14)	Effects of resveratrol and/or quercetin on serum cyclooxygenase-2 and α1-antitrypsin levels in HCC rat groups.	112

Table	Title	Page
(15)	Effects of resveratrol and/or quercetin on serum	١15
	glutathione and glutathione oxidized concentrations in	
	HCC rat groups.	
(16)	Effects of resveratrol and/or quercetin on GSH/GSSG	۱18
(17)	ratio in HCC rat groups.	121
(17)	Effects of resveratrol and/or quercetin on White blood cells count in HCC rat groups.	121
(18)	Effects of resveratrol and/or quercetin on lymphocytes	124
	and monocytes percentages in HCC rat groups.	
(19)	Effects of resveratrol and/or quercetin on neutrophil percentage and neutrophil elastase levels in HCC rat groups.	127
(20)	Effects of resveratrol and/or quercetin on platelets count in blood of HCC rat groups.	130
(21)	Effects of resveratrol and/or quercetin on prothrombin time and partial thromboplastin time levels in HCC rat groups.	133
(22)	Effects of resveratrol and/or quercetin on thrombin time and fibrinogen levels in HCC rat groups.	136
(23)	Effects of resveratrol and/or quercetin on plasminogen and antithrombin levels in HCC rat groups.	139
(24)	Effects of resveratrol and/or quercetin on thrombin antithrombin complex and fibrin degradation product levels in HCC rat groups.	142
(۲۰)	Effects of resveratrol and/or quercetin on α 2-macroglobulin levels in HCC rat groups.	١45

List of Figures

Fig.	Title	Page
(1)	Chemical structure of <i>trans</i> - (A) and <i>cis</i> -resveratrol (B)	42
(2)	Chemical structure of quercetin	48
(3)	Chemical structure of diethylnitrosamine	52
(4)	Chemical structure of phenobarbital	52
(5)	Chemical structure of resveratrol	53
(6)	Chemical structure of quercetin	54
(7)	Administration effects of both diethylnitrosamine and	71
	phenobarbital on serum level of α -fetoprotein and activities	
	of aspartate transaminase, alanine transaminase, lactate	
	dehydrogenase, gamma-glutamyl transferase and alkaline	
	phosphatase in rats.* P<0.0° and ** P<0.001 are presented in	
	comparison with the corresponding ones.	
(8)	Administration effects of both diethylnitrosamine and	71
	phenobarbital on serum levels of total protein and albumin in	
	rats.*P<0.0° is presented in comparison with the	
	corresponding ones.	
(9)	Administration effects of both diethylnitrosamine and	74
	phenobarbital on serum levels of vascular endothelial growth	
	factor, matrix metalloproteinase-2 and matrix	
	metalloproteinase-9 parameters in rats.** P<0.001 is	
(10)	presented in comparison with the corresponding ones.	7.4
(10)	Administration effects of both diethylnitrosamine and	74
	phenobarbital on serum levels of tumour necrosis factor-	
	alpha, interleukin-1beta and interleukin-6 parameters in rats.	
	**P<0.001 is presented in comparison with the corresponding ones.	
(11)	Administration effects of both diethylnitrosamine and	75
(11)	phenobarbital on serum levels of endostatin, cyclooxygenase-	13
	2 and α1-antitrypsin parameters in rats. * P<0.0° and **	
	P<0.001 are presented in comparison with the corresponding	
	ones.	
(12)	Administration effects of both diethylnitrosamine and	75
(==)	phenobarbital on serum levels of glutathione, glutathione	
	oxidized and glutathione/ glutathione oxidized ratio in rats.	
	*P<0.0° and ** P<0.001 are presented in comparison with	
	the corresponding ones.	
(13)	Administration effects of both diethylnitrosamine and	76
	phenobarbital on serum levels of neutrophil elastase and	

Fig.	Title	Page
	heparanase parameters in rats. ** P<0.001 is presented in	
	comparison with the corresponding ones.	
(14)	Administration effects of both diethylnitrosamine and	79
	phenobarbital on WBCs count, neutrophil, monocytes and	
	lymphocytes percentage in rats. * P<0.0° and ** P<0.001 are	
	presented in comparison with the corresponding ones.	
(15)	Administration effects of both diethylnitrosamine and	82
	phenobarbital on levels of prothrombin time, partial	
	thromboplastin time and thrombin time in rats. ** P<0.001 is	
	presented in comparison with the corresponding ones.	
(16)	Administration effects of both diethylnitrosamine and	82
	phenobarbital on platelets count, fibrinogen and plasminogen	
	levels in rats. * P<0.0° is presented in comparison with the	
(1=)	corresponding ones.	02
(17)	Administration effects of both diethylnitrosamine and	83
	phenobarbital on antithrombin, thrombin antithrombin	
	complex, fibrin degradation product and alpha2-	
	macroglobulin levels in rats. * P<0.0° and ** P<0.001 are	
(10)	presented in comparison with the corresponding ones.	86
(18)	Effects of resveratrol and/or quercetin on serum α -fetoprotein level in HCC rat groups.	ου
(19)	Effects of resveratrol and/or quercetin on serum aspartate	89
(1)	transaminase activity in HCC rat groups.	0)
(20)	Effects of resveratrol and/or quercetin on serum alanine	89
(20)	transaminaseactivity in HCC rat groups.	0)
(21)	Effects of resveratrol and/or quercetin on serum total protein	92
	levels in HCC rat groups.	
(22)	Effects of resveratrol and/or quercetin on serum albumin	92
Ĺ	levels in HCC rat groups.	
(23)	Effects of resveratrol and/or quercetin on serum lactate	95
	dehydrogenase activity in HCC rat groups.	
(24)	Effects of resveratrol and/or quercetin on serum gamma-	95
	glutamyl transferase activity in HCC rat groups.	
(25)	Effects of resveratrol and/or quercetin on serum alkaline	98
	phosphatase activity in HCC rat groups.	
(26)	Effects of resveratrol and/or quercetin on serum vascular	101
	endothelial growth factor levels in HCC rat groups.	
(27)	Effects of resveratrol and/or quercetin on serum endostatin	101
	levels in HCC rat groups.	

Fig.	Title	Page
(28)	Effects of resveratrol and/or quercetin on serum matrix	104
	metalloproteinase-2 activity in HCC rat groups.	
(29)	Effects of resveratrol and/or quercetin on serum matrix	104
	metalloproteinase-9 activity in HCC rat groups.	
(30)	Effects of resveratrol and/or quercetin on serum tumour	١٠7
	necrosis factor-α levels in HCC rat groups.	
(31)	Effects of resveratrol and/or quercetin on serum heparanase	١٠7
	levels in HCC rat groups.	
(32)	Effects of resveratrol and/or quercetin on serum interleukin-	110
	1β levels in HCC rat groups.	
(33)	Effects of resveratrol and/or quercetin on serum interleukin-6	110
	levels in HCC rat groups.	
(34)	Effects of resveratrol and/or quercetin on serum	113
	cyclooxygenase-2 levels in HCC rat groups.	
(35)	Effects of resveratrol and/or quercetin on serum α1-	113
(5.5)	antitrypsin levels in HCC rat groups.	
(36)	Effects of resveratrol and/or quercetin on serum glutathione	116
(2=)	concentration in HCC rat groups.	A A 6
(37)	Effects of resveratrol and/or quercetin on serum glutathione	116
(20)	oxidized concentration in HCC rat groups.	110
(38)	Effects of resveratrol and/or quercetin on GSH/GSSG ratio in	۱19
(20)	HCC rat groups.	122
(39)	Effects of resveratrol and/or quercetin on White blood cells	122
(40)	count in HCC rat groups. Effects of resveratrol and/or quercetin on lymphocytes	125
(40)	percentage in HCC rat groups.	125
(41)	Effects of resveratrol and/or quercetin on monocytes	125
(71)	percentage in HCC rat groups.	. 23
(42)	Effects of resveratrol and/or quercetin on neutrophil	178
()	percentage in HCC rat groups.	•
(43)	Effects of resveratrol and/or quercetin on neutrophil elastase	178
	levels in HCC rat groups.	_
(44)	Effects of resveratrol and/or quercetin on platelets count in	١31
	blood of HCC rat groups.	
(45)	Effects of resveratrol and/or quercetin on prothrombin time	١34
	levels in HCC rat groups.	
(46)	Effects of resveratrol and/or quercetin on partial	134
	thromboplastin time levels in HCC rat groups.	
(47)	Effects of resveratrol and/or quercetin on thrombin time	137
	levels in HCC rat groups.	

Fig.	Title	Page
(48)	Effects of resveratrol and/or quercetin on fibrinogen levels in	۱۳7
	HCC rat groups.	
(49)	Effects of resveratrol and/or quercetin on plasminogen levels	١40
	in HCC rat groups.	
(50)	Effects of resveratrol and/or quercetin on antithrombin levels	١40
	in HCC rat groups.	
(51)	Effects of resveratrol and/or quercetin on thrombin	١43
	antithrombin complex levels in HCC rat groups.	
(52)	Effects of resveratrol and/or quercetin on fibrin degradation	١43
	product levels in HCC rat groups.	
(53)	Effects of resveratrol and/or quercetin on α2- macroglobulin	1 1 6
	levels in HCC rat groups.	

List of Abbreviations

AFB1 Aflatoxin B1

AKR Aldo-keto reductases
Akt Protein Kinase B
AFP α- fetoprotein

ALT Alanine transaminase

AMPK AMP-activated protein kinase

ALP Alkaline phosphatase AST Aspartate transaminase

AT Antithrombin

Bcl-2 B-cell lymphoma- 2

BFGF Basic fibroblastic growth factor

BLT Benign liver tumours

C Control

CBR Carbonyl reductases C4BP C4b-binding protein

CCL2 Chemokine (C-C motif) ligand 2
CCL3 Chemokine (C-C motif) ligand 3
CCL5 Chemokine (C-C motif) ligand 5
CCL20 Chemokine (C-C motif) ligand 20
CCL21 Chemokine (C-C motif) ligand 21
CCR6 C-C Motif Chemokine Receptor-6
CD147 Cluster of differentiation 147

Cdk inhibitor1 Cyclin-dependent kinase inhibitor 1

CD8⁺ **T** cytotoxic T lymphocyte-8

Cox Cyclooxygenase
Cox-1 Cyclooxygenase-1
Cox-2 Cyclooxygenase-2

CSF1 Cyclooxygenase-2
CSF1 Colony Stimulating Factor 1

CXCL-1 Chemokine (C-X-C motif) ligand1
CXCL-4 Chemokine (C-X-C motif) ligand 4
CXCL-5 Chemokine (C-X-C motif) ligand 5
CXCL-7 Chemokine (C-X-C motif) ligand 7
CXCL-10 Chemokine (C-X-C motif) ligand 10
CXCL-12 Chemokine (C-X-C motif) ligand 12

CYPs Cytochrome P450
DCPC Des-γ-carboxy PC
DENA Diethylnitrosamine

DTNB 5, 5'-dithiobis-2-nitrobenzoic acid, Ellman's reagent

ECM Extracellular Matrix