

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

The Effect of Tunnel versus Conventional Phototherapy on the T Lymphocytes in Full Term Neonates with Hyperbilirubinemia

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Ahmed Mohammed Ali Saleh

M.B.B.CH 2007- Pediatrics Diploma (2015) Ain Shams University

Under Supervision of

Prof. Dr./ Mona Mostafa El-Ganzoury

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Prof. Dr./ Rania Ali El-Farrash

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Dalia Ahmed Diaa El Dine Salem

Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2022

سورة البقرة الآية: ٣٢

First and foremost, I feel always indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Dr./ Mona Mostafa El-Ganzoury, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Prof. Dr./ Rania Ali El-Farrash, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof. Dalia Ahmed Diaa El Dine Salem**, Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Neonatal Jaundice	4
Effect of Phototherapy on the Immune S	System 85
Patients and Methods	92
Results	106
Discussion	134
Summary	148
Conclusions	150
Recommendations	151
References	152
Arabic Summary	—

List of Abbreviations

166r. Full-term : American Academy of Pediatrics **AAP** B/A : Bilirubin /albumin **BDG** : Bilirubin diglucuronide **BMG** : Bilirubin monoglucuronide, **CBC** : Complete Blood Count **CMV** : Cyto megalo virus CN-I : Crigler-Najjar syndrome type I **CN-II** : Crigler-Najjar syndrome type II CO : Carbon monoxide **DAT** : Direct antiglobulin test **DNA** : Deoxyribonucleic acid **EGF** : Epidermal growth factor **ETCOc** : End Tidal Carbon Monoxide concentration G6PD : Glucose -6-phosphate dehdrogenase **GMP** : Guanosine monophosphate : Hemolytic disease of newborn HDN HO : Heme oxygenase **IVIG** : Intravenous immunoglobulin **K-EDTA** : k-ethylene diamine tetra-acetic acid LED : Light-emitting diodes **MPS** : Metalloporphyrins PK : Pyruvate kinase **SnMP** : Tin-mesoporphyrin **TCB** : Trans-cutaneous bilirubin **TSB** : Total serum bilirubin UA/V : Umbilical artery/vein

UCB : Umbilical cord blood

UDPGT : Uridine 5'-diphospho-glucuronosyltransferaseUGT1A1 : Isoenzyme 1A1 of UDP-glucuronosyltransferase

UVA : Ultraviolet AUVB : Ultraviolet B

List of Tables

Table No.	Title	Page	No.
Table (1):	Mechanism of ne hyperbilirubinemia	eonatal	11
Table (2):	Differential diagnosis of ne hyperbilirubinaemia based on or presentation	nset of	14
Table (3):	Parameters to be assessed on ad breastfeeding		19
Table (4):	Causes of pathological unconjudy	_	23
Table (5):	Mechanisms of hyperbilirubiner sepsis		33
Table (6):	Visual Assessment of Ne Jaundice (Kramer's rule)		39
Table (7):	Clinical pathway for management the newborn infant readmitted phototherapy or exchange transful	ed for	47
Table (8):	Suggested use of phototherapy exchange transfusion in preterm i	•	52
Table (9):	Choice of blood group for donor (ABO and Rh typing)		77
Table (10):	Demographic and clinical character of studied neonates		107
Table (11):	Age of start of phototherapy in ho	ours	108
Table (12):	Cause of jaundice	•••••	109
Table (13):	Duration of phototherapy in hour	S	109

Table (14):	Total, direct and indirect serum bilirubin levels on admission
Table (15):	Total, direct and indirect serum bilirubin levels after 48 hours of phototherapy110
Table (16):	Total, direct and indirect serum bilirubin levels at discharge
Table (17):	Baseline haematological parameters 112
Table (18):	Haematological parameters after 48 hours of phototherapy
Table (19):	Hematological parameters before and after 48 hours of phototherapy in conventional phototherapy group
Table (20):	Hematological parameters before and after 48 hours of phototherapy in tunnel phototherapy group
Table (21):	Baseline lymphocyte subsets percentage and count of studied neonates in conventional phototherapy, tunnel phototherapy and control groups
Table (22):	Lymphocyte subsets percentage and count of studied neonates in conventional phototherapy and tunnel phototherapy group after 48 hours of phototherapy
Table (23):	Lymphocyte subsets percentage and count before and after 48 hours of phototherapy in the whole phototherapy groups
Table (24):	Lymphocyte subsets percentage and count before and after 48 hours of phototherapy in conventional phototherapy group

Table (25):	Lymphocyte subsets percentage and count before and after 48 hours of phototherapy in tunnel phototherapy group
Table (26):	Percentage of drop of total, indirect serum bilirubin level, lymphocytes subsets percentages and counts and CD4/CD8 ratio after 48 hours of conventional and tunnel phototherapy 129
Table (27):	Correlation between duration of phototherapy in hours and each of lymphocytic count and lymphocytes subsets % and count before and after 48 hours of phototherapy in conventional phototherapy group and tunnel phototherapy group
Table (28):	Correlation between total and indirect serum bilirubin (before and after phototherapy) and each of CD4, CD8 (percentages and counts) and lymphocytic count in conventional and tunnel phototherapy groups

List of Figures

Figure No	. Title	Page No.
Figure (1):	Steps of bilirubin production	6
Figure (2):	Steps of bilirubin uptake by the liv	er8
Figure (3):	Mechanism of maternal sensitized in Rh incompatibility and prevention with anti-D.	its
Figure (4):	Red cell in hereditary elliptocythereditary elliptocytosis with classical form and more ovalocytic cells	the c red
Figure (5):	Schematic approach to the diagnos neonatal jaundice	
Figure (6):	A newborn infant being checked jaundice with a transcutan bilimeter	eous
Figure (7):	BiliCheck® (BC; Respironics, Mar GA—USA)	
Figure (8):	BiliStick®	42
Figure (9):	Mechanism of phototherapy	49
Figure (10):	Guidelines of phototherapy in Hospi Infants Born at a Gestational Age	of 35
Elano (11).	Weeks or more.	
Figure (11):	Structural photoisomerization	
Figure (12):	Two halogen spotlights	
Figure (13):	Bilisphere® 360, Novos Med System, Turkey	

Figure (14):	Firefly® high-intensity double sided LED phototherapy	58
Figure (15):	A neonate using bili-blanket	59
Figure (16):	Phototherapy with reflectors	60
Figure (17):	Combination phototherapy	62
Figure (18):	Brownish pigmentation seen over the abdomen	72
Figure (19):	Schematic diagram for performing a single-catheter pull push ET through the umbilical vein	76
Figure (20):	Mechanisms of decreasing bilirubin production	82
Figure (21):	Enhancing the three steps in hepatic UCB clearance that are all underactive in human neonates	83
Figure (22):	Comparison between hemoglobin level (gm/dL) before and after 48 hours of phototherapy in conventional phototherapy group.	115
Figure (23):	Comparison between lymphocytic count (x10³/uL) before and after 48 hours of phototherapy in conventional phototherapy group.	115
Figure (24):	Comparison between hemoglobin level (gm/dL) before and after 48 hours of phototherapy in tunnel phototherapy group.	118

Figure (25):	Comparison between lymphocytic count (x10³/uL) before and after 48 hours of phototherapy in tunnel phototherapy group
Figure (26):	Listmode illustration of the flowcytometric quantitation of CD4 ⁺ CD8 ⁺ positive cells in perpherial blood of neonates undergoing phototherapy:119
Figure (27):	Lymphocytic count (x10³/uL) before and after 48 hours of phototherapy in the whole phototherapy groups
Figure (28):	CD4, CD8 absolute count (x10³/uL) before and after 48 hours of phototherapy in the whole phototherapy groups
Figure (29):	Comparison between CD4 percentage before and after 48 hours of phototherapy in conventional phototherapy group
Figure (30):	Comparison between CD4, CD8 absolute counts before and after 48 hours of phototherapy in conventional phototherapy group
Figure (31):	CD4, CD8 and lymphocytic count before and after 48 hours of phototherapy in tunnel phototherapy group
Figure (32):	Comparison between conventional phototherapy group and tunnel phototherapy group regarding percentage of drop of CD4%

Abstract

Background: Neonatal jaundice is one of the most common conditions. Phototherapy has been accepted as the standard treatment for neonatal jaundice and the decline in the number of exchange transfusions in recent years is, at least in part, likely a direct reflection of the effectiveness of phototherapy at treating hyperbilirubinemia. However, this treatment modality also has some complications. One possible harmful consequence is potential immunotoxic effects by affection of lymphocytes subtypes which can affect the immune system functions in infants. Aim of the Work: current study was performed to compare the effect of both conventional and tunnel phototherapy on lymphocytes subsets in term neonates (≥37weeks) with unconjugated hyperbilirubinemia. **Patients and Methods:** The present study was conducted on 60 term neonates (≥37weeks) 40 of them with unconjugated hyperbilirubinemia admitted to NICUs in Ain-Shams University hospital during the period from January 2019 to July 2019. They were randomly assigned to 3 groups: 20 patients were exposed to conventional phototherapy and 20 patients were exposed to tunnel phototherapy and the other 20 healthy full term were assigned as control group. Total serum bilirubin (TSB), direct serum bilirubin (DSB), CBC, CD4 and CD8 percentages and absolute count were measured before and 48 h after phototherapy in the phototherapy groups. Baseline lab was done in the control group at once. Results: significant decrease in total and direct bilirubin post-phototherapy in both phototherapy groups proved that tunnel phototherapy is as effective as conventional phototherapy as both provided rapid decrease in bilirubin levels. As regards the effect of phototherapy on lymphocytic count, we found that lymphocytic count significantly decreased post-phototherapy in both phototherapy groups. As regards the effect of phototherapy on CD4+ and CD8+ percentages, we found that CD4+ % significantly decreased post-phototherapy in conventional phototherapy group. Moreover, when we measured CD4+ and CD8+ absolute counts, we found that CD4+ and CD8+ absolute counts significantly decreased post-phototherapy in both phototherapy groups. In the view of the effect of phototherapy on CD4/CD8 ratio, we found that the ratio significantly increased in tunnel phototherapy group. Conclusion: Conventional and Tunnel phototherapy which are used in the treatment of neonatal hyperbilirubinemia, affects the function of the immune system in newborns via alterations in CD4+ and CD8+ absolute counts.

Key words: Tunnel, conventional Phototherapy, T Lymphocytes, Full-term Neonates, Hyperbilirubinemia

Introduction

eonatal jaundice is one of the most common condition that requires medical attention in newborns as approximately 60% of term and 80% of preterm newborns suffer from jaundice in the first week of life (*Brits et al.*, 2018).

The yellow discoloration of the skin and sclera in newborns with jaundice is the result of accumulation of unconjugated bilirubin. In most infants, unconjugated hyper-bilirubinemia reflects a normal transitional phenomenon. However, in some infants, serum bilirubin levels may excessively rise which can be a cause for concern (*El Mashad et al.*, 2019).

Phototherapy is the primary treatment in neonates with unconjugated hyperbilirubinemia. This therapeutic principle was discovered in England in the 1950s and is the most widespread therapy used in newborns (*Mreihil et al., 2010*). It involves exposing the infant's skin to light of specific wavelength (420-470 nm) (*Jahanshahifard et al., 2012*).

Its efficacy is dependent on the color (wavelength) and intensity (irradiance) of the light emitted during phototherapy, the exposed body surface area as well as the duration of the exposure (*Kanmaz et al.*, 2017).