

بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

NA		TORE	ملاحظات:
4 1	6997		
	AIMSWAM	R. CIVILOE BRILLA.	
1	5/15/20	1912	

بمكات وتكنولوجبارته

سورة البقرة الأية: ٣٢

Updated Guidelines for Cardiopulmonary Resuscitation with Special Situations in ICU

Essay

Submitted for partial fulfillment for master degree
In Intencive Care Medicine

By

Ahmed Abou El maaty Saad M.B.B.Ch

Supervisors

Prof. Dr. Sherif Wadie Nashed

Professor of Anesthesia and ICU
Faculty of Medicine - Ain Shams University

Dr. Amr Ahmed Kasem

Lecturer of Anesthesia and ICU

Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2013

الجديد في المبادئ التوجيهية لإنعاش القلب والرئتين مع دراسة بعض الحالات الخاصة في وحدة العناية المركزة

رسالة توطئة للحصول على درجة الماجستير في العناية المركزة

مقدمة من

أحمد أبو المعاطى سعد بكالوريوس الطب والجراحة

تحت إشراف أد شريف وديع ناشد

> أستاذ التخدير والعناية المركزة كلية الطب - جامعة عين شمس

د. عمرو أحمد قاسم مدرس التخدير والعناية المركزة كلية الطب- جامعة عين شمس

كلية الطب

جامعة عين شمس ٢٠١٣

Thanks to Allah from start to end, that this work has been completed.

First foremost, I am extremely grateful to **Prof. Dr. Sherif**Wadie Nashed, Professor of Anesthesia and Intensive Care,
Faculty of Medicine, Ain Shams University, for his kind supervision, valuable guidance and continuous encouragement and I wish him a good health.

I would also like to thank **Dr. Amr Ahmed Kasem** Lecturer of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his very helpful suggestions and encouragement. He spent a lot of his time for completing this work.

I would like to express my special thanks to all members of Anesthesiology and Intensive Care department, faculty of Medicine, Ain Shams University for their valuable support. I would like to thank my family for every thing.

Ahmed Abou El maaty Saad
2013

s Sa

Family for their warm affection, patience, encouragement, and for always being there when I needed them

s Ja

My Wife who always support me, my son **Yousef** who fill my life with joy.

Contents

Subjects	Page
List of abbreviations	I
• List of Tables	III
• List of Figures	IV
• Introduction	1
Aim of the work	5
• Chapter (1): Anatomy and physiology	6
• Chapter (2): Adult basic life support	16
• Chapter (3): Adult advanced cardiovascular life s	support 32
• Chapter (4): Post cardiac arrest care	75
• Chapter (5): Cardiac arrest in special situations	91
• Summary	128
• References	130
Arabic summary	

List of Abbreviations

ACLS: Advanced cardiovascular life support

ACS: Acute coronary syndrome

AED: Automated external defibrillator

AHA: American heart association

AMI : Acute myocardial infarction

ATP : Adenosine triphosphate

BLS: Basic life support

CI : Confidence interval

CPP : Cerebral perfusion pressure

CPR : Cardiopulmonary resuscitation

ECC: Emergency cardiac care

ECG: Electrocardiogram

EDD : Eosophageal detector device

EMS: Emergency medical service

FiO2 : Fractional inspired concentration

IM: Intramuscular

IN : Intranasal

IO : Intraosseous

IV : Intravenous

LBBB: Left bundle branch block

LMA: Laryngeal mask airway

LV : left ventricle

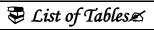
E List of Abbreviations &

PCI: Percutaneous coronary intervention

PE: Pulmonary embolism

PEA: Pulsless electrical activity

ROSC: Return of spontaneous circulation


SC : Subcutaneous

SCA: Sudden cardiac arrest

STEMI: ST elevation myocardial infarction

VF : Ventricular fibrillation

VT : Ventricular tachycardia

List of Tables

Table No.	Title	page
Table (1)	Phases of action potential in purkinje fibres	11
Table (2)	Treatable Causes of Cardiac Arrest: The	36
	H's and T's	

List of figures

Fig. No	Title figure		
Figure (1)	Organization of the A-V node. The	7	
	numbers represent the interval of time		
	from the origin of the impulse in the sinus		
	node.		
Figure (2)	The action potential in ventricular muscle	13	
	and its temporal relationship with the		
	surface ECG.		
Figure (3)	BLS healthcare provider algorithm.	17	
Figure (4)	ACLS Cardiac Arrest Algorithm.	34	
Figure (5)	ACLS Cardiac Arrest Circular Algorithm.	35	
Figure (6)	Advanced life support cardiac arrest	38	
	algorithm.		
Figure (7)	Post–cardiac arrest care algorithm.	80	
Figure (8)	Acute coronary syndromes algorithm.	92	

Introduction

In 1966 the American Heart Association (AHA) developed the first cardiopulmonary resuscitation (CPR) guidelines, which have been followed by periodic updates. During the past 50 years the fundamentals of early recognition and activation, early CPR, early defibrillation, and early access to emergency medical care have saved hundreds of thousands of lives around the world. These lives demonstrate the importance of resuscitation research and clinical translation and are cause to celebrate this 50th anniversary of CPR (*Eisenberg*, 2009).

The newest development in the 2010 AHA Guidelines for CPR and Emergency cardiac care (ECC) is a change in the basic life support (BLS) sequence of steps from "A-B-C" (Airway, Breathing, Chest compressions) to "C-A-B" (Chest compressions, Airway, Breathing) for adults and pediatric patients (children and infants, excluding newly borns). Although the experts agreed that it is important to reduce time to first chest compressions, they were aware that a change in something as the A-B-C sequence would require re-education of everyone who has ever learned CPR BLS is the foundation for saving lives following cardiac arrest. Fundamental aspects of adult BLS include immediate recognition of sudden cardiac arrest and activation of the

emergency response system, early performance of high-quality CPR, and rapid defibrillation when appropriate. The BLS algorithm has been simplified, and "Look, Listen and Feel" has been removed from the algorithm (*AHA Guidelines*, 2010).

The 2010 AHA Guidelines for CPR and ECC have been updated to reflect new data on the use of pacing in bradycardia, and on cardioversion and defibrillation for tachycardic rhythm disturbances. Integration of Automated External Defibrillators (AEDs) into a system of care is critical in the Chain of Survival in public places outside of hospitals. To give the victim the best chance of survival, 3 actions must occur within the first moments of a cardiac arrest: activation of the EMS system provision of CPR, and operation of a defibrillator (*Hinchey et al.*, 2010).

Advanced Cardiovascular Life Support (ACLS) affects multiple links in the Chain of Survival, including interventions to prevent cardiac arrest, treat cardiac arrest, and improve outcomes of patients who achieve Return of Spontaneous Circulation (ROSC) after cardiac arrest. Adenosine can now be considered for the diagnosis and treatment of stable undifferentiated wide-complex tachycardia when the rhythm is regular and the QRS waveform is monomorphic.

Introduction &

For symptomatic or unstable bradycardia, intravenous (IV) infusion of chronotropic agents is now recommended as an equally effective alternative to external pacing when atropine is ineffective. In addition, atropine is no longer recommended for routine use in the management of pulseless electrical activity (PEA)/ asystole (*Meaney et al.*, 2010).

The 2010 AHA Guidelines for CPR and ECC recognize the increased importance of systematic care and advancements in the multispecialty management of patients following ROSC and admission to the hospital that can affect neurologically intact survival.

Initial and later key objectives of post-cardiac arrest care include:

- Optimizing cardiopulmonary function and vital organ perfusion after ROSC.
- Transportation to an appropriate hospital or critical-care unit with a comprehensive post—cardiac arrest treatment system of care.
- Identification and intervention for acute coronary syndromes (ACS).
- Temperature control to optimize neurologic recovery.