

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

IMPROVEMENT OF ULTRAFILTERED FETA CHEESE FACILITATES AS A SPECIAL HEALTHY FOOD

By

AHMED MOHAMED MOHE ELDEIN AZEHARY

B.Sc.Agric. Sc. (Dairy Sc. & Tech.), Fac. of Agric. Cairo Al-Azhar Univ., 2006

A Thesis Submitted in Partial Fulfillment
Of
the Requirements for the Degree of

MASTER OF SCIENCE in Agricultural Sciences (Dairy Science and Technology)

Food Science Department
Faculty of Agriculture
Ain Shams University

Approval Sheet

IMPROVEMENT OF ULTRAFILTERED FETA CHEESE FACILITATES AS A SPECIAL HEALTHY FOOD

By

AHMED MOHAMED MOHE ELDEIN AZEHARY

B.Sc.Agric. Sc. (Dairy Sc. & Tech.), Fac. of Agric. Cairo Al-Azhar Univ., 2006

This thesis for the M.Sc. degree has been approved by:			
Dr. Mamdouh Ahmed Mohamed Omar			
Professor of Dairy Science and Technology, Faculty of Agriculture,			
Al-Azhar University, Cairo.			
Dr. Azza Mahmoud Farahat			
Professor of Dairy Science and Technology, Faculty of Agriculture,			
Ain Shams University.			
Dr. Atef El-Sayed Fayed			
Professor of Dairy Science and Technology, Faculty of Agriculture,			
Ain Shams University.			

Date of Examination: 11 /2 / 2020

IMPROVEMENT OF ULTRAFILTERED FETA CHEESE FACILITATES AS A SPECIAL HEALTHY FOOD

By

AHMED MOHAMED MOHE ELDEIN AZEHARY

B.Sc.Agric. Sc. (Dairy Sc. & Tech.), Cairo Al-Azhar University, 2006

Under the supervision of:

Dr. Atef El-Sayed Fayed

Professor of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University, (Principal supervisor).

Dr. Ahmed Osama Emam

Lecturer of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University.

Dr. Meranda Abd El-Megaly Tawfek

Senior Researcher of dairy Science, Food Technology Research Institute, Agricultural Research Center.

ABSTRACT

Ahmed Mohamed Mohe Eldin Azhart. Improvement of Ultrafiltered Feta Cheese Facilitates As a Special Healthy Food. Unpublished M.Sc. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2020.

The present study was aimed to experiment the combination between milk fat and NaCl substitution for reducing calories and sodium ion to find out to what extent they would maintain their physical properties and sensory acceptance of cast Feta cheese made using dried milk protein concentrated previously, indeed by the ultrafiltration technique.

Cast Feta cheese, i.e. it was filled in the liquid phase before coagulation without whey drainage, whereas skimmed milk powder was arithmetically mixed with dried milk protein concentrate reconstituted with warm tap water at 45°C providing that the final formulation should be contained the total solids of 21% and 12% protein. In the base of full cream Feta cheese, the fat content was adjusted to 16% using butter oil (the control). For other treatments, butter oil was replaced with maltodextrin at the level of nil, 25, 50, 75 or 100%. All formulas were heat treated at 72° C for 2 min., at which they were homogenized at 200 bar then cooled to the suitable renneting temperature (at 40° C). Potassium sorbate was added at the level of 0.015% and salted to 2.5% toble salt (NaCl), whether alone or replaced with KCl at the level of nil, 25, 50 or 75%. Glucono delta lactone was added at the level of 2.5% then rennet solution was added at the rate of 2 ml /10 Kg pre-cheese, which was packaged into plastic containers and incubated at the same temperature for the complete coagulation (within 30 min.). All cheese containers were cold stored at $5\pm1^{\circ}$ C for 3 months.

The results indicated that, although all differences in all cheese criteria were significant, most of which did not explain any clear trending.

The proportional fat replacement with maltodextrin led to gradual reduction in the dry matter (DM) and ash contents of resultant cheese. The repining indices; titratable acidity, water soluble nitrogen (WSN) on total nitrogen (TN) and non-protein nitrogen / TN contents increased as the fat was more replaced. Both of hardness, chewiness and gumminess of cheese increased while cohesiveness decreased by fat replacement. Total bacterial count (TBC) increased while, yeasts and molds (Y&M) count decreased as the fat was replaced by maltodextrin. All judging scores of cheese sensory attributes, especially consistency and flavor were decreased as the fat was replaced more than 75%. The substitution of NaCl with KCl in cheese salting heightened the DM and protein contents. Cheese hardness was weakened while gumminess was strengthened by NaCl replacing with KCl which caused gradual reduction in TBC and Y&M count. Nevertheless, all scores of cheese sensory properties were declined by NaCl substitution more than 50%. During cold storage period (CSP) of cheese both of TA, WSN\TN and NBN\TN contents as well as Y&M count increased while pH value lowered. All rheological texture parameters and organoleptic attributes' scores of cheeses decreased by prolonging the CSP but still keeping their acceptable panelist quality until the end of experimental CSP, provided that the level of fat replacement does not exceed 75% and that the level of replacement of sodium chloride does not increase more than 50%.

As a conclusion it could be successfully Feta cheese production with fewer calories and sodium content to meet the needs of some special health purposes while maintaining good chemical, rheological and microbiological properties, provided that the percentage of fat replacement does not exceed 75% and that the percentage of sodium chloride replacement does not exceed 50%.

Key words: Chemical composition, Repining indices, Microbiological quality, Texture profile

ACKNOWLEDGMENT

Deepest, greatest and sincere thanks to **ALLAH** the most Merciful, Great and Clement God.

I wish to extend my deepest appreciation and sincere gratitude to **Prof. Dr. Atef E. Fayed,** Professor of Dairy Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University for the suggestion as well as initiation of this study, kind attention and greater help provided for the accomplishment of this work and for his efforts and supervising.

My special thanks would be expressed for **Dr. Ahmed O. Emam,** Lecture of Dairy Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University, for the facilities present at his lab for this study.

I wish to find the words that can help to express my great thanks to **Dr. Meranda A. Tawfek,** Senior of Dairy Science, Food Technology Research Institute, Agricultural Research Center, for her fruitful efforts during study.

I would like to thank all stuff members of Food Science Department, Faculty of Agriculture, Ain Shams University as well as Food Technology Research Institute, Agricultural Research Center, Giza.

Thanks also to everyone who provided help or advised me to achieve this manuscript.

CONTENTS

No.		Page
	LIST OF TABLES	III
	LIST OF FIGURES	IV
	LIST OF ABBREVIATIONS	V
I	INTRODUCTION	1
П	REVIEW OF LITERATURE	4
1	Milk fat in cheese	4
1.1	Significance of milk fat in cheese	4
1.2	Fat induced health risks	5
1.3	Flatness occurred in cheese palatability due to fat	6
	absence	
1.4	Fat replacer	8
1.4.1	Fat substitute	8
1.4.2	Fat mimetic	9
1.4.2.1	Proteinous-origin fat mimetic	10
1.4.2.2	Carbohydratic- origin fat mimetic	10
1.4.2.2.1	Maltodextrin as a carbohydrate based fat mimetic	11
2	Sodium salt in cheese	12
2.1	Technical role of sodium salt in cheese industry	12
2.2	Sodium salt induced health impacts	13
2.3	Strategies for reducing sodium salt in cheese	14
2.4	Substitution of sodium chloride in cheese making	15
3	Feta as a verity of brined full cream cheese	16
III	MATERIALS AND METHODS	20
1	Materials	20
1.1	Skimmed milk powder	20
1.2	Milk Protein Concentrate	20
1.3	Maltodextrin	20
1.4	Butter oil	20
1.5	Rennet	20

No.		Page
1.6	Glucono delta lactone	20
1.7	Toble salt	21
1.8	Potassium chloride	21
1.9	Potassium sorbate	21
2	Experimental procedures	21
2.1	Preparation of rennet solution	21
2.2	Preparation of Feta cheese without whey drainage	21
.3	Analyticl Methods	22
3.1	Determination of gross composition contents	22
3.2	Determination of titratable acidity	22
3.3	Measurement of pH value	22
3.4	Water soluble nitrogen	24
3.5	Non protein nitrogen	24
3.6	Texture profile analyses	24
3.7	Microbiological analyses	24
3.7.1	Total bacterial count	24
3.7.2	Yeasts and Molds count	24
3.8	Organoleptic evaluation	24
3.9	Statistical analysis	25
IV	RESULTS AND DISCUSSION	26
1	Chemical composition of castFeta cheese	26
2	Titratable acidity and pH value of cast Feta cheese	32
3	Water soluble nitrogen and non-protein nitrogen of cast	36
	Feta cheese	
4	Texture profile of cast Feta cheese	40
5	Microbiological profile of UF-Feta cheese	50
6	Organoleptic quality of cast Feta cheese	54
V.	SUMMARY AND CONCLUSION	61
VI.	REFERENCES	64
VII.	ARABIC SUMMARY	

LIST OF TABLES

NO		Page
1	Chemical composition of fresh cast Feta cheese as affected	27
	by fat and / or NaCl replacement	
2	Analysis of variance of data given in Table (1)	28
3	Titratable acidity (TA) % and pH value of cast Feta cheese	32
	as affected by fat and / or NaCl replacement during cold	
	storage period.	
4	Analysis of variance of data given in Table (3)	33
5	Water Soluble nitrogen (WSN) % and non protein	36
	nitrogen (NPN) % expressed on total nitrogen (TN) of cast	
	Feta cheese as affected by fat and / or NaCl replacement	
	during cold storage period	
6	Analysis of variance of data given in Table (5)	37
7	Texture profile of cast Feta cheese as affected by fat and	42
	/or NaCl replacement during cold storage period	
8	Analysis of variance of data given in Table (7)	44
9	Microbiological quality of cast Feta cheese as affected by	53
	fat and / or NaCl replacement during cold storage period	
10	Analysis of variance of data given in Table (9)	54
11	Organoleptic judging score of cast Feta cheese as affected	50
	by fat and / or NaCl replacement during cold storage	
	period	
12	Analysis of variance of data given in Table (11)	51

LIST OF FIGURES

NO		Page
1	Flow diagram of cast Feta cheese from skimmed	22
	milk powder (SMP) and dried milk protein	
	concentrate (DMPC) with fat and/or NaCl	
	replacement	