

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University
Faculty of Science
Department of Biochemistry

Window for Biomarkers in diagnosis of Acute Kidney Injury disease

A Thesis

Submitted as a Partial Fulfillment for the Requirements of the Degree of Master of Science in Biochemistry

By Shadwa Mohamed Ali El-Esawy

B.Sc. in Biochemistry/ Chemistry (2013) Faculty of science, Port Said University

Under supervision of

Prof. Dr. Magdy Mahmoud Mohamed

Professor of Biochemistry
Faculty of Science - Ain Shams University

Dr. Rasha EL-Sherif Hassan

Assistant Professor of Biochemistry Faculty of Science - Ain Shams University

Dr. Asmaa Mohamed Nabiel Eessa

Lecturer of Geriatric Medicine and Gerontology Faculty of Medicine - Ain Shams University

> Biochemistry Department Faculty of Science Ain Shams University

> > 2020

Ain Shams University
Faculty of Science
Department of Biochemistry

Student name: Shadwa Mohammad Ali Abd Al-Hameed Al-Essawy

Thesis title: Window for Biomarkers in diagnosis of Acute Kidney Injury disease

Degree name: Master of Science in Biochemistry

Supervision Committee:

Prof. Dr. Magdy Mahmoud Mohamed

Professor of Biochemistry - Department of Biochemistry

Faculty of Sciences - Ain Shams University

Dr. Rasha EL-Sherif Hassan

Assistant Professor of Biochemistry - Department of Biochemistry

Faculty of Sciences - Ain Shams University

Dr. Asmaa Mohamed Nabiel Eessa

Lecturer of Geriatrics and Geriatrics - Faculty of Medicine

Ain Shams University

Discussion Committee:

Prof. Mohammad Abbas Shemis

Professor of Biochemistry and Molecular Biology

Tedor Bilharz Research Institute

Prof. Dr. Menha Mahmoud Swellam

Professor of Biochemistry Research - Department of Biochemistry

National Research Centre

Prof. Dr. Magdy Mahmoud Mohamed

Professor of Biochemistry - Department of Biochemistry

Faculty of Sciences - Ain Shams University

Date of discussion of the message: //

Graduate Studies

License stamp
College Board Approval

The letter was authorized on / / University Council Approval

/ /

Ain Shams University
Faculty of Science
Department of Biochemistry

Biography

Name: Shadwa Mohamed Ali El-Esawy

Date of Graduation: May 2013

Degree awarded: B. Sc. in Biochemistry/Chemistery 2013

Grade: M. Sc. in Biochemistry

Declaration

I herefore declare that this thesis has not been submitted for a degree at this or any other university, and that the work therein has been done by myself.

Shadwa Mohamed Ali El-Esawy

ACKNOWLEDGEMENT

First of all, I express my deepest thanks and gratitude to *Allah* the omniscient and the most merciful.

I would like to express my deep gratitude to *Prof. Dr. Magdy Mahmoud Mohamed* Professor of Biochemistry, Faculty of Science, Ain Shams University, for his invaluable advices and encouragement during this research.

I can't find the suitable words to express about my deepest grateful to my advisor *Dr. Rasha EL-Sherif Hassan* Associate Professor of Biochemistry, Faculty of Science, Ain Shams University, for her constant professional support, excellent expertise and motivating discussions about research and guiding me through this research.

I would like to thank *Dr. Asmaa Mohamed Nabiel Eessa*, Lecturer of Geriatric Medicine and Gerontology, Faculty of Medicine, Ain Shams University, without her I would not have been able to complete this research, and without her I would not have made it through my master degree.

Finally, not forgetting my family, that also give me continuous support during this study, this vote of thanks also especially goes, to my dear husband *Ahmed Yousry*, my **Father**, my **Brother** and **my** *lovely Mother*; she was always cheering me up and standing by my side in every step in my life, and also to everyone who encouraged me during this study.

LIST OF CONTENTS

CONTENTS	No.
LIST OF TABLES	I
LIST OF FIGURES	III
LIST OF ABBREVIATIONS	VIII
ABSTRACT	X
Chapter I:INTRODUCTION ANDAIM OF WORK	
Chapter II:LITERATURE REVIEW	8
2.1. Kidneys Anatomy, Physiology and function	8
2.2. Disorders of the kidney	9
2.3. Definition and Classification of Acute Kidney Injury	9
2.4. Epidemiology of acute kidney injury	13
2.5. Risk Factors Associated with the Development of Acute Kidney	
Injury	14
2.6. Pathophysiology of Acute kidney injury	16
2.7. Inflammatory process in AKI	
2.8 Cell death in the setting of AKI	
2.9. Diagnosis of Acute Kidney Injury	
Chapter III: SUBJECTS AND METHODS	
Chapter IV: RESULTS	
4.1 Demographic characteristic	120
4.2 Biochemical investigations	122
4.3 Molecular analysis	155
4.4 Correlation analysis	157
4.5. Receiving operating (ROC) curves	161
Chapter V: DISCUSSION	
SUMMARY	
CONCLUSION	
REFERENCES	194
Arabic Summary	
Arabic Abstract	

LIST OF TABLES

Table		Page
Table (2.1)	Different causes of pre-renal, renal and post-renal AKI	15
Table (3.1)	SyBR green dye, cDNA synthesis kit and oligonucleotides	101
Table (3.2)	qPCR gene-specific primers	102
Table (4.1)	Demographic characteristic of the participants	120
Table (4.2a)	Serum Creatinine (Scr.mg/dl) levels of AKI patients versus non AKI subjects along 96 hours of ICU admission	123
Table (4.2b)	Serum Creatinine (Scr.mg/dl) levels in the total AKI patients and their three subgroups at different studied periods	124
Table (4.3a)	Urine creatinine levels (U.Cr mg/dl) in AKI patients versus non AKI subjects along 96 hours of ICU admission	126
Table (4.3b)	Urine creatinine levels (u Cr) (mg/dl) in total AKI patients and their subgroups at different studied periods	127
Table (4.4a)	Serum urea levels (S. urea) (mg/dl) in AKI patients versus non AKI subjects along 96hours of ICU admission	130
Table (4.4b)	Serum urea levels (mg/dl) in total AKI patients and their subgroups at different studied time periods	130
Table (4.5a)	Serum Uric Acid levels (mg/dl) in AKI patients versus non AKI subjects along 96 hours of ICU admission	133

Table		Page
Table (4.5b)	Serum uric acid levels (mg/dl) in total AKI patients and their subgroups at different studied time periods	133
Table (4.6a)	Serum albumin levels (mg/dl) in AKI patients versus non AKI subjects along 96 hours of ICU admission	136
Table (4.6b)	Serum Albumin levels (mg/dl) in total AKI patients and their subgroups at different studied time periods	136
Table (4.7a)	Serum microalbuminurea levels ($\mu g/dl$) in AKI patients versus non AKI subjects along 96 hours of ICU admission	139
Table (4.7b)	Serum micro-albuminurea levels ($\mu g/dl$) in total AKI patients and their subgroups at different studied time periods	139
Table (4.8a)	Albumin/creatinine ratio in AKI patients versus non AKI subjects along 96 hours of ICU admission	142
Table (4.8b)	Albumin/creatinine ratio in the total AKI patients and their subgroups at different studied time periods	142
Table (4.9a)	Serum KIM-1 (ng/ml) in AKI patients versus non AKI subjects along 96 hours of ICU admission	145
Table (4.9b)	Serum KIM-1(ng/ml) in the total AKI patients and their subgroups at different studied time periods	145
Table (4.10a)	Urine KIM-1 level (ng/ml) in AKI patients versus non AKI subjects along 96 hours of ICU admission	148

Table Page Table (4.10b) Urine KIM-llevel (ng/ml) in the total AKI patients and their subgroups at different studied time periods 148 **Table (4.11a)** Estimated glomerular filtration rate (eGFR) (ml/min/1.73m²) in AKI patients versus non AKI subjects along 96 hours of ICU admission 151 Table(4.11b) Estimated glomerular filtration rate (ml/min/ 1.73m²) in the total AKI patients and their subgroups at different studied time periods **151** Expression levels of Kim-1, NGAL and NAG in **Table (4.12)** the AKI and non AKI subjects at zero time 153 **Table (4.13)** Relative quantification of KIM-1, NGAL and NAG in the AKI patients at (ohr,24hr and 48hr) of the admission to the ICU 154

LIST OF FIGURES

Figures		Page
Figures (2.1)	Nephron structure	9
Figures (2.2)	Primary causes of kidney failure	10
Figures (2.3)	RIFLE and AKIN classification for acute kidney injury	12
Figures (2.4)	Relationship between the clinical phases and the cellular phases of ischemic acute kidney injury (AKI), and the temporal impact on organ function as represented by glomerular filtration rate (GFR)	16
Figures (2.5)	Alternation of Regional blood flow following is altered following injury in ischemic AKI	18
Figures (2.6)	Interplay between tubular and vascular injury leading to sustained reductions of GFR in the extension phase of AKI	26
Figures (2.7)	Illustration of the various stages of apoptotic cell death	40
Figures (2.8)	The continuum of renal cell damage	41
Figures (2.9)	Overview of death-signaling pathways in mammalian cells	45
Figures (2.10)	AKI- Markers	49
Figures (2.11)	Formation of creatinine	51
Figures (2.12)	Origin of the old and new biomarkers of acute kidney injury	58
Figures (2.13)	Effects of NGAL on survival, motility, angiogenic, apoptotic and glucose metabolism	79
Figures (2.14)	Advantage and disadvantage of kim-1, NGAL, IL-18 and cystatin c as biomarkers of acute kidney injury	80
Figures (4.1)	The percentage of the participated subjects according to gender	121

Figures		Page
Figures (4.2a)	The trend of serum creatinine level among AKI and non AKI subjects along 96 hours of their admission to ICU	125
Figures (4.2b)	Serum creatinine level in AKI patients at different periods of ICU hospitalization expressed as (% change) compared to the baseline level	125
Figures (4.3a)	The trend of urine creatinine level among AKI and non AKI subjects along 96 hours of their admission to ICU	128
Figures (4.3b)	Urine creatinine level in AKI patients at different periods of ICU hospitalization expressed as (% change) compared to the baseline level	128
Figures (4.4a)	The trend of serum urea level among AKI and non AKI subjects along 96 hours from ICU admission	131
Figures (4.4b)	Serum urea level in AKI patients at different periods of ICU hospitalization expressed as (% change) compared to the baseline level	131
Figures (4.5a)	The trend of serum uric acid level among AKI and non AKI subjects along 96 hours from ICU admission	134
Figures (4.5b)	Serum uric acid level in AKI patients at different periods of ICU hospitalization expressed as (% change) compared to the baseline level	134
Figures (4.6a)	The trend of serum albumin level among AKI and non AKI subjects along 96hours from ICU admission	137
Figures (4.6b)	Serum albumin level in AKI patients at different periods of ICU hospitalization expressed as (% change) compared to the	
	baseline level	137

Figures		Page
Figures (4.7a)	The trend of serum micro-albuminurea level among AKI and non AKI subjects along 96hours from ICU admission	140
Figures (4.7b)	Serum micro-albuminurea level in AKI patients at different periods of ICU hospitalization expressed as (% change) compared to the baseline level	140
71 (40)		140
Figures (4.8a)	The trend of albumin/creatinine ratio in AKI and non AKI subjects along 96hours from ICU admission	143
Figures (4.8b)	Albumin/creatinine ratio in AKI patients at	
rigares (1105)	different periods of ICU hospitalization	
	expressed as (% change) compared to the	
	baseline ratio	143
Figures (4.9a)	The trend of serum KIM-1 level in AKI and non AKI subjects along 96hours from ICU	
	admission	146
Figures (4.9b)	Serum KIM-1 level in AKI patients at different periods of ICU hospitalization expressed as (% change) compared to the	
	baseline level	146
Figures (4.10a)	The trend of urineKIM-1 level in AKI and non AKI subjects along 96hours from ICU	
	admission	149
Figures (4.10b)	Urine KIM-1 level in AKI patients at different	
	periods of ICU hospitalization expressed as (% change) compared to the baseline level	149
Figures (4.11a)	The trend of eGFR ((ml/min/1.73m ²) in AKI and non AKI subjects along 96hours from ICU	
	admission	152