

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

INTERDISCIPLINARY LABORATORY TRIALS FOR ISOLATION AND CHARACTERIZATION OF PATHOGENIC FREE-LIVING AMOEBAE FROM THE EGYPTIAN ENVIRONMENT

A thesis

Submitted for the award of Ph.D. degree in Science

(Zoology)

By

Mohamed Ali Ibrahim Osman Marouf

M.Sc. Zoology 2016

Under the supervision of

Prof. Dr. Ameen A. Ashour

Emeritus Professor of Parasitology Faculty of Science Ain Shams University

Prof. Dr. Ahmad Z. Al-Herrawy

Emeritus Professor of Parasitology Water Pollution Research Department National Research Centre

Prof. Dr. Mohammad I. Soliman

Professor of Parasitology
Faculty of Science
Ain Shams University

Dr. Mahmoud A. Gad

Associate Professor of Parasitology Water Pollution Research Department National Research Centre

Department of Zoology Faculty of Science Ain Shams University

INTERDISCIPLINARY LABORATORY TRIALS FOR ISOLATION AND CHARACTERIZATION OF PATHOGENIC FREE-LIVING AMOEBAE FROM THE EGYPTIAN ENVIRONMENT

A thesis

Submitted for the award of Ph. D. degree in Science (Zoology)

By

Mohamed Ali Ibrahim Osman Marouf

M.Sc. Zoology

2016

Department of Zoology Faculty of Science Ain Shams University

2022

Interdisciplinary laboratory trials for isolation and characterization of pathogenic Free-living amoebae from the Egyptian environment

Student Name: Mohamed Ali Ibrahim Osman Marouf

Degree: Philosophy Doctor in science (Zoology)

Department: Zoology

Faculty: Science

University: Ain Shams

Graduation year: 2009

Awarded year: 2022

ACKNOWLEDGMENT

This is a good chance to express my sincere gratitude to my teachers and my colleagues, without them the results presented in this thesis could not be accomplished.

The candidate would like to express his deepest thanks and appreciation to **Prof. Dr. Ameen A. Ashour**, Emeritus Professor of Parasitology **and Prof. Dr. Mohamad I. Soliman**, Professor of Parasitology, Zoology Department, Faculty of Science, Ain Shams University for their kind supervision, continuous encouragement, and for their revision of this thesis with a great care and precision. Their guidance and ultimate support are greatly appreciated.

I am greatly indebted to **Prof. Dr. Ahmad Zakaria Al-Herrawy,** Professor of Parasitology, Water Pollution Research Department, National Research Centre for suggesting the topic of this study, his kind undeniable role in supervising the work, providing the necessary facilities and great assistance, advising during the progress of this work.

The candidate would like also to express his deepest thanks to **Dr. Mahmoud Afw Gad**, Associate Professor of Parasitology, Water Pollution Research Department, National Research Centre, for his kind supervision and his kind revision of this thesis with a great care and precision. His guidance and ultimate support are greatly appreciated.

Deep thanks for **Prof. Dr. Gamila El-Taweel** (Professor of Microbiology, National Research Centre) and **Prof. Dr. Gamila. H. Ali** (Professor of Hydrobiology, National Research Centre) for providing me by bacterial and algal strains. The candidate cannot forget the assistance of members in Water Pollution Research Department (**National Research Centre**), Zoology Department (**Faculty of Science, Ain Shams University**) and **Academy of Scientific Research and Technology, Egypt.**

CONTENTS

LIST OF TABLES	I
LIST OF FIGURES	II
LIST OF ABBREVIATIONS	VI
ABSTRACT	1
1.INTRODUCTION	4
1.2. History of FLA	5
1.3. Biology of FLA	6
1.4. Morphologic criteria of FLA	7
1.5. Feeding of FLA	9
1.6. Ecology of FLA	10
1.7. Life cycle and division of FLA	10
1.8. Detection methods for FLA	12
1.9. Pathogenicity of FLA	14
1.10. Interaction of FLA with microorganisms	15
1.11. Control of FLA	17
2.AIM OF THE STUDY	24
3.MATERIALS AND METHODS	25
3.1. MATERIALS	25
3.1.1.Media for isolation of FLA	25
3.1.2.Molecular identification of isolated FLA	26
3.1.4.2Algal strains	31
3.2. METHODS	32
3.2.1. ENVIRONMENTAL STUDY	32
Isolation and identification of FLA from the aquatic environment	32

3.2.1.1. Samples and sampling sites
3.2.1.2. Concentration and cultivation of FLA using the traditional method (NN agar seeded with <i>E.coli</i>)
3.2.1.3. Quality control for culturing method
3.2.1.4. Purification and preservation of FLA
3.2.1.5. Morphologic identification of isolated FLA35
3.2.1.5.1. Direct microscopic examination of FLA
3.2.1.5.2. Flagellation test for detection of the amoeboflagellates36
3.2.1.6. Molecular characterization of isolated FLA using polymerase chain reaction (PCR)
3.2.1.6.1.DNA extraction using QIAamp DNA stool mini kit36
3.2.1.6.2. Amplification of extracted DNA40
3.2.1.6.3. Agarose gel electrophoresis
3.2.1.7. Gene sequence analysis of the isolated FLA41
3.2.1.7.1. Purification of PCR products
3.2.1.7.2. Sequencing of FLA isolates
3.2.2. Interdisciplinary laboratory trials for propagation of identified environmental isolates of FLA
3.2.2.1. Use of axenic cultures for propagation of isolated and identified FLA
3.2.3. Statistical analysis
4. RESULTS49
4.1. ENVIRONMENTAL STUDY49
4.1.1. Morphological, molecular characterization and occurrence of FLA
4.1.2. Seasonal variations of FLA
4.1.3. Gene sequence analysis of FLA59

4.2. INTERDISCIPLINARY LABORATORY TRIALS FOR
PROPAGATION AND MAINTENANCE OF THE THREE CHARACTERIZED SPECIES OF FLA70
4.2.1. Use of axenic media for cultivation of isolated FLA70
4.2.1.1. Cultivation of isolated FLA on PYG media70
4.2.1.2. Cultivation of isolated FLA on RPMI media
4.2.1.3. Cultivation of isolated FLA on BHI, 993TSY media and TSA with sheep blood
4.2.2. Use of monoxenic media for cultivation of isolated FLA80
4.2.2.1. Cultivation of isolated FLA on non-nutrient agar seeded with algae
4.2.2.2. Cultivation of isolated FLA on non-nutrient agar seeded with different bacterial species
5. DISCUSSION105
5.1. ENVIRONMENTAL STUDY105
5.2. INTERDISCIPLINARY LABORATORY EXPERIMENTS117
5.2.1. Axenic media
5.2.2. Monoxenic cultures
6.SUMMARY124
7.CONCLUSION AND RECOMMENDATIONS127
8.REFERENCES
Iالمستخلص العربي
IVالملخص العربي

LIST OF TABLES

Table 1. Description of the primers used in PCR for the detected genera of common FLAs
Table 2. Morphological identification of detected free-living amoebae53
Table 3. Acanthamoeba genotype T4 cultured on axenic media71
Table 4. Cultivation of <i>Naegleria clarki</i> cysts on axenic media71
Table 5. Cultivation of <i>Vermamoeba vermiformis</i> cysts on different axenic media
Table 6. Acanthamoeba genotype T4 cultured on monoxenic media81
Table 7. Cultivation of <i>Naegleria clarki</i> cysts on monoxenic media84
Table 8. Cultivation of <i>Vermamoeba vermiformis</i> cysts on different monoxenic media

LIST OF FIGURES

Figure 1. a) Basic pseudopodial patterns in amoebae and b) lobose8
Figure 2. Floating forms of amoebae. a), b), d) and e) with radiating pseudopodia; c) without defined pseudopodia
Figure 3. Morphology and life cycle of <i>Acanthamoeba</i> spp
Figure 4. Morphology and life cycle of <i>Naegleria fowleri</i> 12
Figure 5. Interaction relationship between different FLA and different microorganisms
Figure 6. Schematic diagram showing the treatment stages in conventional and compact DWTFs
Figure 7. Workflow for DNA extraction using QIAamp DNA stool mini kit. The source is the manual of QIAamp DNA stool mini kit
Figure 8. Flow chart showing the experimental design for FLA on axenic media
Figure 9. Flow chart showing the experimental design of FLA on monoxenic media
Figure 10. Algal species shape (A) Microcystis flosaquae (B) Scenedesmus obliquus (C) Chlamydomonas reinhardtii
Figure 11. Photomicrographs for isolated FLAs. A) <i>Acanthamoeba</i> trophozoite; B) <i>Acanthamoeba</i> cyst; C) <i>Vermamoeba</i> trophozoite; D) <i>Vermamoeba</i> cyst; E) <i>Naegleria</i> trophozoite; F) <i>Naegleria</i> cyst. Bar = 10
Figure 12. Occurrence and removal of <i>Acanthamoeba</i> spp. in conventional DWTF
Figure 13. Occurrence and removal of <i>Acanthamoeba</i> spp. in compact DWTF
Figure 14. Occurrence and removal of <i>Vermamoebavermiformis</i> in conventional DWTF. The colors of the legends correspond to the axes' colors
Figure 15. Occurrence and removal of <i>Vermamoebavermiformis</i> in compact DWTF. The colors of the legends correspond to the axes' colors
Figure 16. Agarose gel electrophoresis for the PCR amplified product of (A) <i>Acanthamoeba</i> isolates DNA by using the genus-specific primers, (B)

Vermamoebavermiformis isolates, (C) Naegleria. M: 100 plus DNA Ladder, +ve: positive control, -ve: negative control
Figure 17. Neighbor-joining tree depicting the relationships between our environmental isolates (n = 8) and reference strains representing <i>Naegleriaclarki</i> , <i>Vermamoebavermiformis</i> and <i>Acanthamoeba</i> genotypes60
Figure 18. Phylogenetic tree of <i>Acanthamoeba astronyxis</i> (isolate 1; pointed by triangle) and related <i>Acanthamoeba</i> species and genotypes. The database constructed by maximum likelihood method
Figure 19. Phylogenetic tree of <i>Acanthamoeba</i> genotype T4 (isolate 2; pointed by triangle) and related <i>Acanthamoeba</i> species and genotypes. The database constructed by maximum likelihood method
Figure 20. Phylogenetic tree of <i>Acanthamoeba lenticulata</i> (isolate 3; pointed by triangle) and related <i>Acanthamoeba</i> species and genotypes. The database constructed by maximum likelihood method
Figure 21. Phylogenetic tree of <i>Acanthamoeba</i> genotype T3 (isolate 4; pointed by triangle) and related <i>Acanthamoeba</i> species and genotypes. The database constructed by maximum likelihood method
Figure 22. Phylogenetic tree of <i>Acanthamoeba</i> genotype T15 (isolate 5; pointed by triangle) and related <i>Acanthamoeba</i> species and genotypes. The database constructed by maximum likelihood method
Figure 23. Phylogenetic tree of <i>Vermamoeba vermiformis</i> (isolate 6 and 7; pointed by triangle) and related other <i>Vermamoeba vermiformis</i> and eukaryotic species. The database constructed by maximum likelihood method68
Figure 24. Phylogenetic tree of <i>Naegleria clarki</i> (isolate 8; pointed by triangle) and related <i>Naegleriaclarki</i> and FLA species. The database constructed by maximum likelihood method.
Figure 25. Cultivation of <i>Acanthamoeba</i> genotype T4 on solid and liquid PYG media
Figure 26. Cultivation of <i>Naegleria clarki</i> on solid and liquid PYG medium73
Figure 27. Cultivation of <i>Vermamoeba vermiformis</i> on solid and liquid PYG medium
Figure 28. Cultivation of FLA on solid PYG medium74
Figure 29 Cultivation of FLA on liquid PYG medium 74