

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

SERUM IGG4 LEVEL FOR MALIGNANCY PREDICTION IN INDETERMINATE THYROID NODULES AMONG PATIENTS WITH OR WITHOUT AUTOIMMUNE THYROID DISEASE

Thesis

Submitted for Partial Fulfillment of M.D. Degree In Internal Medicine

Rahma Khaled ElSayed ElShaer

(M.B., B.Ch., M.SC.)

Supervised by

Prof. Dr./ Mohamed Reda Halawa

Professor of Internal Medicine and Endocrinology
Internal medicine & Endocrinology

Prof. Dr./ Iman Zaki Ahmed

Professor of Internal Medicine and Endocrinology
Internal medicine & Endocrinology

Prof. Dr./ Nahla Fawzy Aboelezz

Professor of community, Environment, and occupational medicine community, Environment, and occupational medicine

Prof. Dr./ Ahmed Mohamed Bahaa Eldin

Assistant Professor of Internal Medicine and Endocrinology
Internal medicine & Endocrinology

Dr./ Nagwa Roshdy Mohamed

Lecturer of Internal Medicine and Endocrinology
Internal medicine &Endocrinology

Faculty of Medicine Ain Shams University 2022

نسب الاجسام المضادة للجلوب ن المناعي ج٤ في الدم للتنبؤ بالسرطان الغده الدرقية في المرضي الذين يعانون من عقيدات الغده الدرقية في ر المحددة مع الوبدون المرض المناعي للغده الدرقية

رسالة

توطئة للحصول علي درجة الدكتوراه في الباطنة العامة مقدمة من

الطبيبة / رحمة خالد السد الشاعر

بكالوريوس الطب و الجراحة- ماجستير الباطنة العامة

تحت إشراف

أد/ محمد رضا حلاوة

أستاذ الطب الباطني والغدد الصماء كلية الطب- جامعة عين شمس

أد/ إيمان زكي احمد

أستاذ الطب الباطني والغدد الصماء كلية الطب- جامعة عين شمس

أ.د/ نهله فوزي ابو العز

أستاذ طب الأسرة والمجتمع كلية الطب – جامعة عين شمس

أ.م.د/ احمد محمد بهاء الدين

أستاذ مساعد الطب الباطني والغدد الصماء كلية الطب – جامعة عين شمس

د / نجوی رشدي محمد

مدرس الطب الباطني والغدد الصماء كلية الطب جامعة عين شمس كلية الطب

جامعة عين شمس

7.77

سورة البقرة الآية: ٣٢

CONTENTS

Ti	Title Pa	
•	List of Abbreviations I	
•	List of TableIII	
•	List of FiguresIV	
•	Introduction1	
•	Aim of the work4	
•	Review of literature	
	Chapter (1): Nodular thyroid disease5	
	Chapter (2): Thyroid antibodies	
	Chapter (3): IgG4	
	Chapter (4): Thyroid malignancy	
	Chapter (5): Thyroid U/S and TIRAD scoring 33	
	Chapter (6): FNAC and Bethesda classification 40	
•	Subjects and Methods47	
•	Results65	
•	Discussion85	
•	Conclusion91	
•	Summary92	
•	References94	
•	الملخص العربي	

LIST OF ABBREVIATIONS

Abb.	Full term
ACR-TIRADS	American collage or radiology thyroid imaging reporting
ACK-TIKADS	and data system.
Anti TG	Anti thyroglobulin antibodies.
Anti TPO	Anti thyroid peroxidase antibodies.
ATA	American thyroid association
AUC	Area under the curve.
AUS	Atypia of undetermined significance
BSRTC	Bethesda system for reporting thyroid cytopathology.
CTL	Cytotoxic T lymphocytes
DSPTC	Diffuse sclerosing papillary thyroid carcinoma.
DW-MRI	Diffusion weighted- magnetic resonance imaging.
EFVPTC	Encapsulated follicular variant of papillary thyroid
	carcinoma.
ELISA	Enzyme-linked immunoassay.
FA	Follicular adenoma.
FDG-PET	Fludeoxyglucose- positron emission tomography.
FLUS Follicular lesion of undetermined significance	
FN/SFN	Follicular neoplasm/suspicious for follicular neoplasm.
FNAC	Fine needle aspiration cytology.
FT3	Free triiodothyronine.
FT4	Free thyroxine.
FTC	Follicular thyroid carcinoma.
FVPTC	follicular variant of papillary thyroid carcinoma.
HPV	Human papilloma virous.
HT	Hashimoto's thyroiditis.
IFN-γ	Interferon-γ.
IgG4	immunoglobulin g4. Immunoglobulin g4-related disease.
IgG4-RD IgG4-TRD	
IL	Immunoglobulin g4-thyroid related disease. Interleukin.
	Medians with interquartile ranges.
IQRs K-TIRADS	Korean thyroid imaging reporting and data system.
MEN	
1,2131	multiple endocrine neoplasia

∠ List of Abbreviations

Abb.	Full term
MRI	Magnetic resonance imaging.
n	Number.
ND-BSRTC	Non-diagnostic, Bethesda system for reporting thyroid
ND-DSKIC	cytopathology.
NI-FVPTC	Noninvasive follicular variant of papillary thyroid
MITVITE	carcinoma.
NPV	Negative predictive value
PTC	Papillary thyroid carcinoma
PPV	Positive predicted value
r	Correlation coefficient.
REC	Research ethics committee.
Sig.	Significance.
SPSS	Statistical package for the social sciences.
SWE	The shear wave elastography.
TC	Thyroid carcinoma.
TG	Thyroglobulin.
TGF-β	Tumor growth factor β .
Th	T helper.
TNF-α	Tumor necrosis factor-α.
Treg	Regulatory t cells.
TSH	Thyroid stimulating hormone.
Tx	Thyroidectomy.
US	Ultrasonography

LIST OF TABLE

Table No	Subjects	Page
Table (1):	The Bethesda System for Reporting Thyroid Cytopathology	44
Table (2):	ACR-TIRADS nodule features and associated points for each characteristic	51
Table (3):	ACR-TIRADS scores	51
Table (4):	Bethesda System for cytologic diagnosis of thyroid nodules	54
Table (5):	Descriptive Statistics of the studied patients	67
Table (6):	Comparison between patients with TIRADS 3 and 4 as regard Bethesda classification system	70
Table (7):	Comparison between benign and malignant groups as regard age , sex and TIRADS:	72
Table (8): C	omparison between benign and malignant groups as regard thyroid profile	74
Table (9):	Bethesda classification and the risk of malignancy.	76
Table (10):	Comparison between Autoimmune thyroid disease and the outcome of histopathology	78
Table (11):	Correlation between serum IgG4 level regarding age and autoimmune thyroid antibodies	79
Table (12):	Comparison between IgG4 level with the other studied parameters	82
Table (13):	ROC curve for validity of Serum IgG4 level for prediction of malignant thyroid nodules	84

LIST OF FIGURES

Figure No	Subjects	Page
Figure (1):	Anatomy of thyroid gland	5
Figure (2):	Algorithm for evaluation of patients with one or more thyroid nodules	10
Figure 3:	Sonographic and clinical features of thyroid nodules and recommendations for FNAC	11
Figure (4):	The association between autoimmune thyroid antibodies, Hashimoto's thyroiditis, and graves thyroid disease	13
Figure (5):	The immune response in autoimmune thyroiditis	19
Figure (6):	Malignancy and an immune response	20
Figure (7):	Cross reactivity between thyroidal anticancer immunity and autoimmunity	21
Figure (8):	Structure of Immunoglobulin G (IgG) and its subclasses	24
Figure (9):	Microscopic findings of thyroid papillary carcinoma cells	27
Figure (10):	Algorithm for management of thyroid nodules	31
Figure (11):	The 2017 ACR Thyroid Imaging Reporting and Data System (TIRADS)	35
Figure (12):	sonographic finding of TIRADS classification of thyroid nodules	39
Figure (13):	ATA sonographic characteristics of thyroid nodules and risk of malignancy	52
Figure (14):	COBAS E601 analyzer	60
Figure (15):	Patients according to TIRAD scoring system	68
Figure (16):	Patients according to postoperative histopathology.	68
Figure (17):	Comparison between patients with TIRADS 3 and 4 as regard Bethesda classification system	70

€ List of Figures

Figure No	Subjects	Page
Figure (18):	Comparison between benign and malignant groups as regard gender	72
Figure (19):	Comparison between benign and malignant groups as regard TIRAD score	73
Figure (20):	Bethesda classification and the risk of malignancy.	76
Figure (21):	Correlation of IgG4 levels with anti TPO levels	79
Figure (22):	Correlation of IgG4 levels with anti TG levels	80
Figure (23):	Comparison between Bethesda classification system and IgG4 level.	82
Figure (24):	Comparison between benign and malignant groups regarding IgG4 level	83
Figure (25):	Comparison between positive and negative autoimmune thyroid disease groups regarding IgG4 level.	83

INTRODUCTION

odular thyroid disease is one of the most common thyroid pathology detected in clinical practice. More than 50% of the population has at least one thyroid nodule. (*Ali.*, 2011).

Although nodule prevalence is very high, only 5-10% of the nodules are malignant and require intervention either surgical and /or medical (*Aru et al.*, 2015).

FNAC (Fine needle aspiration cytology) has a high sensitivity usually more than 90%. It was recommended by international experts as an initial or screening test to detect thyroid cancer (**Fatemeh**, *2015*).

However, Thyroid FNAC has low specificity usually 50% to 65% which leads to many unnecessary surgical interventions. Only 20% to 30% of all indeterminate cases by FNAC were found malignant on histology, with high variability in determining risk of malignancy (*Miller et al.*, 2004).

The major concern is to differentiate the malignant lesions from the benign lesions preoperatively. Fine-needle aspiration cytology (FNAC) for thyroid nodules is the key standard test used for this purpose. Although it is a rapid, cost-effective, safe, and reliable test, the non-diagnostic or the indeterminate results may require re-biopsy are the limitations of this method. The indeterminate cytology defined as the "gray zone" (*Bongiovanni et al.*, 2012).

Thyroid cancer is one of the most common endocrine malignancy, and the incidence has been increasing worldwide. Chronic inflammation can be involved in tumorigenesis. It is estimated that more than 20% of all tumors are caused by constant inflammatory state (*Blomberg et al.*, 2012).

Thyroid nodules are usually accompanied by an increase in autoimmune thyroid diseases mainly Hashimoto's thyroiditis (*Ruggeri et al., 2011*).

Immunoglobulin G4-related disease (IgG4-RD) is a new disease class involving many organs, including the endocrine system in general and the thyroid especially. It is a fibro-inflammatory disease with special histological features and frequently elevated serum IgG4 levels which are helpful in the diagnosis. Recent studies focused on the relation between IgG4-RD and malignancies. Thyroid cancer and thyroid autoimmunity are considered opposite extremes of immune responses. Although, several studies thyroid that have proposed cancer coexists with autoimmune thyroid diseases (Tabata et al., 2011).

IgG4-RD is diagnosed when the cut-off for serum IgG4 was set at greater than 135 mg/ dL there are sensitivity and specificity of 90 and 60%, respectively. The measurement of serum IgG4 is also helpful to determine treatment response and recurrence (*Motohisa et al.*, 2012).

Malignancies occurred in 10.4% of IgG4-RD patients, approximately 3.5 times higher than the incidence of cancer in the general population. These results proposed that when diagnosing IgG4-RD, it is essential not only to differentiate between the enlarged organs and cancers but also to consider the possibility of cancer complications in other parts of the body. Malignancies as complications to IgG4-RD are categorized as lymphoma and non-lymphoid tumors (*Tabata et al.*, 2011).

AIM OF THE WORK

e aim to detect the predictive value of serum IgG4 level for the diagnosis of malignancy in indeterminate thyroid nodules (FNAC result) among patients with and without autoimmune thyroid disease.

NODULAR THYROID DISEASE

hyroid gland has a distinctive position among the endocrine organs. Its superficial location qualifies for an early detection of any abnormality. There are many spectrums of thyroid diseases ranges from inflammatory, hyperplastic to neoplastic disorders. Thyroid lesions can present as diffuse or nodular swellings and can be in any one of the following functional classes: Euthyroid, Hypothyroid or Hyperthyroid (*Barui et al.*, 2017).

The normal thyroid gland lies in the anterior neck, anterior to the trachea, deep to the strap muscles, and lateral to it are the carotid arteries and jugular veins. Because thyroid malignancies most commonly present as focal nodules there are morphological and size criteria to recognize nodules most suspicious for malignancy (figure 1) (Alexander et al., 2020).

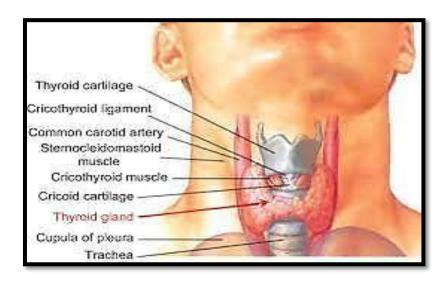


Figure (1): Anatomy of thyroid gland