

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Usefulness of Carcinoembryonic Antigen (CEA) in Evaluating Response to Chemotherapy in Patients with Advanced Non-Small Cell Lung Cancer

Thesis

Submitted in Partial Fulfillment of Master Degree in Clinical Oncology and Nuclear Medicine

By

Alaa Naguib Mohammed Hassan

Under the Supervision of

Prof. Dr. Sherif Ahmed Abdelwahab

Professor of Clinical Oncology and Nuclear medicine Faculty of Medicine-Ain Shams University

Prof. Dr. Dina Ahmed Salem

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine-Ain Shams University

Dr. Caroline Magued Elmaraghi

Lecturer of Oncology and Nuclear Medicine Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always dependent to Allah, the most Beneficent and Merciful who gave me the strength to accomplish this work.

My deepest gratitude to my supervisor, **Prof. Dr. Sherif Abd Elwahab**, Professor of Oncology and Nuclear Medicine, Faculty of medicine –Ain Shams University, for his valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under his supervision.

I would like to express my great and deep appreciation and thanks to **Prof. Dr. Dina Ahmed Salem**, Professor of Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for her patience in reviewing the work and correcting it.

I must express my deepest thanks to **Dr. Caroline Magued Elmaraghi**, Lecturer of Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University for guiding me throughout this work and for granting me much of her time. I greatly appreciate her efforts.

Thanks a lot to all my professors and colleagues for their considerable care and support.

Special thanks to My Mother, Husband And My Sisters for their continuous support.

Alaa Naguib

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	
Introduction	1
Aim of the Work	3
Review of Literature	
Epidemiology	4
Screening	8
Risk Factors	10
Diagnosis and Diagnostic Work Up	14
Pathology	21
Prognostic and Predictive Factors	32
CEA in Non-Small Cell Lung Cancer	42
Patients and Methods	56
Results	60
Discussion	66
Conclusion	75
Summary	76
Recommendations	78
References	79
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	2015 WHO classification of epithelial tumors of lung	•
Table (2):	Summary statistics for characteristics	
Table (3):	The baseline levels of serum CEA a characteristics of NSCLC patients.	
Table (4):	Frequency and percentage for the between CEA level reduction a response	and tumor

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Globocal 2018 lung fact sheet number of new cases worldwide, both sexes, all ages	all cancers,
Figure (2):	Globocal 2018 lung fact sheet number of deaths worldwide, both sexes, all ages	all cancers,
Figure (3):	Age-standardized incidence rate among males and females	•
Figure (4):	The nucleotide excision repair (NER	2) pathway, 36
Figure (5):	Ribonucleotide reductase 1(RRM1).	~
Figure (6):	ROC curve for changes in CEA predictor for tumor response	
Figure (7):	ROC curve for changes in Clarogressive disease	

List of Abbreviations

Abb.	Full term
AIS	Adenocarcinoma in situ
	As low as reasonable achieved
	Cancer antigen 125
	Carcinoembryonic antigen
	Conventional mediastinoscopy
	Combined positive score
	Combined positive scoreComplete response
	Computed tomography
	Disease free survival
	Deoxyribonucleic acid
	Endobronchial ultrasound
	Excision repair cross-complementation
	Immunohistochemistry
	Imaging based response
	Low dose computed tomography
	Modified glasgow score
	Minimally invasive adenocarcinoma
	Nucleotide excision repair
	National lung screening trial
	Not otherwise specified
	Non-small cell lung cancer
	Neuron-specific enolase
	Objective response
<i>PD</i>	Progressive disease
PD-1	Programmed death-1
<i>PD-L1</i>	Programmed death ligand 1
<i>PR</i>	Partial response
<i>PSA</i>	Prostate specific antigen
RECIST	Response evaluation criteria in solid tumor

List of Abbreviations (Cont...)

Abb.	Full term
<i>ROC</i>	Receiver operator curve
<i>RRM1</i>	Ribonucleotide reductase messenger
<i>RT-PCR</i>	Reverse transcriptase polymerase chain reaction
SCC	Squamous cell carcinoma
<i>SD</i>	Stable disease
<i>SHS</i>	Second hand smoke
<i>SLD</i>	Sum of longest diameter
<i>SPN</i>	Solitary pulmonary nodules
<i>SUV</i>	Standardized uptake value
SVCO	Superior vena cava obstruction
<i>TBNA</i>	Transbronchial needle aspiration
<i>TKIs</i>	Tyrosine kinase inhibitors
<i>TPS</i>	Tumor proportion score
<i>TTF-1</i>	Thyroid transcription factor
<i>TTNA</i>	Transthoracic needle aspiration
<i>UK</i>	United Kingdom
<i>VAM</i>	Video-assisted mediastinoscopy
<i>VATS</i>	Video-assisted thoracoscopic surgery
<i>WHO</i>	World health organization

INTRODUCTION

Tung cancer represents the top cause of death and the most common cancer worldwide. In the United States, lung cancer is the second most common cancer accounts for 12.9% of new cancer diagnoses and 27.4 of all cancer deaths. Non small cell lung cancer (NSCLC) represents up to 80% of all lung cancers which divided into two major types: squamous cell carcinoma (SCC) and nonsquamous cell carcinoma (NSCC, including adenocarcinoma, large-cell carcinoma, and other subtypes) (Meza et al., 2015).

The ability to monitor response to treatment depend on imaging studies which is expensive and difficult as not all patients have measurable disease which complicate the availability of evaluating response so a number of biomarker had been used in diagnosis, prognosis and therapeutic monitoring (Molina et al., 2009).

CEA (carcinoembryonic antigen) is the most frequently used tumor marker in the world. It is a glycoprotein product of the gene CEACAM-5, produced in the fetal period by cells of the digestive tract and pancreas (Hammarström, 1999).

A number of tumor markers are used in monitoring response to treatment like PSA (prostate specific antigen) in prostate cancer and CA125 in ovarian cancer. CEA was

established as a prognostic factor in metastatic colon cancer and it is part of routine follow up as recommended by NCCN (Benson et al., 2018).

In the case of lung cancer, there is no sufficient sensitive and specific factor that could help in diagnosis and monitoring of response. A number of studies evaluate the role of CEA in diagnosis, prognosis and monitoring of response in lung cancer (Yu et al., 2013).