

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Effect of Fins Material on the Performance of Stratified Chambers Gas to Gas Heat Exchanger with Porous Medium

A Thesis Submitted in Partial Fulfillment of the Requirement of the Degree of Master of Science in Mechanical Engineering

By

Mohamed Medhat Hussein Khalil

B.sc. Mechanical Engineering, Mechatronics, 2012

Supervised by

Prof. Dr. Hussein Zaky Barakat

Professor of Mechanical Power Department Faculty of Engineering Ain Shams University

Dr. Hamdy Ahmed Hussein Abotaleb

Assistant Professor of Mechanical Power Department
Faculty of Engineering
Ain Shams University

Cairo

2020

Examiners Committee

The undersigned certify that they have read and recommend the faculty of Engineering Ain Sham University for acceptance a thesis entitled "Effect of Fins Material on the Performance of Stratified Chambers Gas to Gas Heat Exchanger with Porous Medium", submitted by Mohamed Medhat Hussein Khalil in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Power Engineering.

Date 01/04/2020

<u>Name</u>

Signature

1. Prof. Dr. Ramdan Mohamed Abd El Aziz Amer

Professor of Mechanical Power Department Faculty of Engineering Shoubra University

2. Prof. Dr. Mahmoud Mohamed Kamal

Professor of Mechanical Power Department Faculty of Engineering Ain Shams University

3. Prof. Dr. Hussein Zaky Barakat

Professor of Mechanical Power Department Faculty of Engineering Ain Shams Universit

STATEMENT

This thesis is submitted as partial fulfillment of Master of Science degree in Mechanical Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or qualification at any other scientific entity.

	Signature
Mohamed Medhat Hus	sein Khalil

Researcher Data

Name : Mohamed Medhat Hussein Khalil

Date of birth : 16/4/1989

Place of birth : Cairo

Academic Degree : Bachoelr of Science

Field of specialization : Mechanical Engineering,

Mechatronics

University issued the degree : The Arab Academy for Science,

Technology& Maritime Transport

Date of issued degree : July 2012

Current job : Senior Design Engineer at

GASCOOL

Acknowledgement

First and foremost, I would like to thank God Almighty for giving me the strength, knowledge, ability and opportunity to undertake this research study and to persevere and complete it satisfactorily. Without his blessings, this achievement would not have been possible.

Special appreciation and thank goes to my thesis Supervisor Prof. Dr. Hussien Zaky Barakat. The door to Dr. Hussien Zaky Barakat office was always open whenever I ran into a trouble spot or had a question about my research or writing. He consistently allowed this research to be my work, but steered me in the right direction whenever he thought I needed it.

I would also like to thank the member of the supervisory Dr. Hamdy Ahmed Hussein Abotaleb for his support, knowledge, and assistance.

Special thanks to Dr. Hany El Sayed Abdel Haleem, Eng. Mai Elghabaty & Eng. Mervat Mohamed for the support and the assistance.

Finally, I must express my very profound gratitude to my parents for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you

Thesis Summary

An experimental study was carried out to investigate the effect of fin material on the performance of stratified chambers gas to gas heat exchanger with and without porous media. The target of these experiments was to study the change of the rate of heat transfer under different hot and cold air stream rates, different porous material thicknesses and different hot air inlet temperatures. Using two different fin materials facilitate the investigation of the heat exchanger performance when using steel and aluminum fins. In additional to the heat exchanger performance in the absence of porous material and its presence is obtained. The determination of the optimum operating parameters to achieve maximum total heat recovery ratio is also investigated.

The test rig used in these experiments consists of the air supply system, flow and temperature measurement instruments, heating system with its control system and five heat exchanger chambers, each chamber provided with corrugated fins. The experimental study showed that using aluminum fins instead of steel fins had much improvement on the performance of the heat transfer rate. While adding the porous material to the heat exchanger chambers leads to improvement of the heat transfer rate on the expense of an increase in pressure drop.

In case of aluminum fins, the porous material thickness is 70 mm and the hot air stream inlet temperature is 400°C, the heat recovery ratio increased to 0.822, at 0.5 m3/min volume flow rate of the cold and hot air streams. While in case of steel fins with the same conditions of the hot air inlet temperature, porous material thicknesses and the volume flow rates of the cold and hot air

streams, the heat recovery ratio was 0.537. It is concluded that in aluminum fins case the heat recovery ratio increases by approximately 53% of the case of the steel fins.

Keywords:

Heat exchanger, aluminum fins, steel fins, porous material, heat transfer.

Nomenclature

ṁ	Air mass flow	kg/se
	rate	c.
$c_{p,c}$	Cold air specific heat capacity at constant	
	pressure	J/kg.
		K
$c_{p,h}$	Hot air specific heat capacity at constant	
	pressure	J/kg.
		K
$T_{c,i}$	Cold air inlet	°C
	temperature	
$T_{c,o}$	Cold air outlet	°C
	temperature	
\overline{T}_{c}	Average cold air	°C
	temperature	
$T_{h.i}$	Hot air inlet	°C
10,0	temperature	
$T_{h,o}$	Hot air outlet	°C
	temperature	
\overline{T}_h	Average hot air	°C
	temperature	
$H_{R.}$	Heat recovery	
	ratio	
Q_h	Rejected heat rate by the hot	Watt
	air	
Q_c	Heat recovery rate. Heat gained by the	
	cold	Watt
	air	
Q_{hc}	Rate of heat transfer from the hot air to	
	the cold	Watt
	air	
$\%Q_{loss}$	Percentage of heat	%
	loss	

Table of Contents

STATEMENT	i
Researcher Data	ii
Acknowledgement	iii
Thesis Summary	v
Nomenclature	vii
Table of Contents	viii
Chapter 1	1
Introduction	1
Chapter 2	4
Literature Review	4
2.1 Introduction	4
2.2 Review of the Previous Work	5
2.2.1 Theoretical Studies	5
2.2.2 Expermental Studies	20
Chapter 3	31
Test Rig and Instrumentation	31
3.1 Introduction	31
3.2 The Device Components	34
3.2.1 The Air Supply System	34
3.2.2 The Orifices for the Air Flow Measurement	36
3.2.3 The Heating System	37
3.2.4 Control of the Heating Rate	38
3.2.5 Temperature Measurement	38
3.2.6 Heat Exchanger chambers	39
3.2.7 The Porous Material	
Chapter 4	43
The Experimental Procedure	43
4.1 Introduction:	43

4.2 The Operating Conditions:4	13
4.3 Experimental Program4	14
4.3.1 The Experiment Procedure of The First stage4	15
4.4 Preparation of the Test Rig for the Experimental Work4 4.5 Thermo-Hydrodynamic Performance Analysis:4	17
4.6 The Governing Equations4	18
Chapter 55	50
Results and Discussion5	50
5.1 Introduction	
5.2.1 Influence of the Air Flow Rates and the Hot Air Inlet Temperatures on the Outlet Temperatures of the Cold Air	
Stream5	52
5.2.2 Influence of the Hot Air Inlet Temperatures and the	- 1
Flow Rate on the Heat Recovery rate5 5.2.3 Influence of the Flow Rate and the Hot Air Inlet)4
Temperatures on the outlet Hot Air Stream Temperatures5	56
5.2.4 Influence of the Flow Rate on the Heat Rejected by the Hot Air	9
5.2.5 Influence of the Inlet Temperatures of the Hot Air	
Stream on the Heat Rejected by the Hot Air	r
Ratio6	
5.3 Experimental Data and the Results of the Second Stage6	3
5.3.1 The Effect of the Porous Material Thickness and the Hot Air Inlet Temperatures on the Outlet Temperatures of the Cold Air Stream	