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Summary

The thesis is devoted to the study of oscillatory and asymptotic

behavior of solutions of some general forms of nonlinear differential

equations which contain some neutral delayed on the form

lso+ P F(x(g, )]+ G0, x(g, @)~ H:x(g3) =0 O

2
gg[x(f )+ P(t) F(x(g (f)))]+ G(t,x(g,(1) — H (1, x(g3 6)=0 (2

2 alt)
2 fx+ PO [P 0 3)

The obtained results Improve and extend some of the known results in the

are relaxed. we give also an

literature. Some sufficient conditions

example arising in mathematical ecology differential equation of the form

g;[x(r) 4 POx(t - D]+ () L+ x@) f (et — o) =0 (4)

ii



Introduction
The aim of this thesis is to discuss oscillatory and asymptotic
behavior of eventually solutions of Neutral Delayed Differential
Equations (NDDE).

Definition (1)

A solution of differential equation is oscillatory if the set of its
zeros is unbounded from above, or otherwise it is nonoscillatory.

A differential equation is oscillatory if all its solutions are
oscillatory, otherwise it is nonoscillatory. For example the

differential equation
el t=20
1s oscillatory since its general solutions are oscillatory while the
equation
x"—x"+x'-x=0
is nonoscillatory because one of its nontrivial solutions, namely,

e', 1s not oscillatory.

Definition (2)

A neutral delayed differential equation (NDDE) is that in
which the highest order derivative of the unknown function
appears in the equation both with and without delays. For

example, the differential equation:



%[x(f) £ P(0)x(t - )]+ O(t)x(t - ) = 0,
where P,Q e([[t,,),R)), and z,o €[0,%) is a first order netural

delayed differential equation.

Definition (3)

The function f is said to be eventually enjoy a property K if
there exists #)>0, such that for t2t, the function enjoys the
property K.

Chapter 1, contains several basic lemmas from analysis that
are used in several occasions throughout this monograph.

In 1994 Lu [20] obtained several new existence theorems for

nonoscillatory solutions of the equation:
d k
E[x(r)—Zc,.(r) Jf(f—V,-(f))}rQ(I)X(f-rf)=0 ; (1)

where

(1), (1) € [£,20), Q0),¢,() 20, 0<vy <v,(V<V, 020, jel, = {12,...k}

In section 1.3, we discuss the (NDDE) of the type
d 2 - w
| X0+ e x(t-2)=3 b, x(t-p)) [=-Dq, x(t~0,), (2)
i=1 J=1 k=l

where



a, 7, >0, foriel= {1,2,...,n} and b;,p,>0, forj gl=l2.., m}, and
g,,0; >0, for keK= {1,2,...,w}‘

]

Our results generalize some of the results of Lu [20].In

1994, Erbe and Kong [6(b)] showed that the first order (NDDE): |

%[x(:) — Px(t-0)]+ iq, (Hx((t-0,)=0, (3)
i=1
where

g,(t) eC([tU,OO),[O,oo)), Pefol], o e(0,), i=12,..,n

is oscillatory if:

n 1+l
rErilminf[,r;!e“” +g—1—ze"‘" Iq,. (S)ds} >1

i=1 !
For
1€ {r.010srunpt H= 0.

In section 1.3, we show that equation (2) is oscillatory if:

m!in[—l—ie’“* g .t ib}.e’"p" — 251,.9’”* _J o
G =

[ =
For
1 €{T,,T;0sTnsP11P2rsPmrT1592 O b
Grammatikopoulos, Ladas and Meimoridou [11(a)], [11(d)]

discussed the second order (NDDE):



i Tl A i S
ST e e

%}[r(f) + Pl x(t - r)] +OQ()x(t-0)=0 (4)

Where
P.0 € C([15.), R),
and the delays t and o are nonnegative real numbers. They showed
that every unbounded solution of (4) oscillates if the conditions:
Al) Q)20 focall r>u;

A2) -1<P(1)<0 forall 121,

o

A3) JQ(&')dS = o

Hold. Moreover it had been shown that the derivative of every

differentiable  solution of (4) oscillates 1f (A3) holds and

P(1) = P =0. In section 1.4, we show that all unbounded solutions of

the second order (NDDE) of the type
dl n m
E[x(r)—}_:ﬁ (Ox(t-. (r))}hzq,.(r)x(z -0, (0)=0 (5)

Where

t,,P.4; € [t,,0)0, €C' [, 0)P, 20,4, >00<7, <7 (<,

0<ay <0,;(0)= o.anda (1) < 0forall}<i<nl< jsm.

are oscillatory, if the two conditions

1) iﬁ(r)gl, and



2) 3. ¢,()ds ==

e
are satisfied. Moreover, we show that the derivatives of all
differentiable solutions of equation (5) are oscillatory if (1) and (2)
hold. |

In 1991, Greaf, Grammatikopoules and Spikes [10(d)], [10(c)]
discussed asymptotic behavior of oscillatory and nonoscillatory

solutions of the two first order nonlinear NDDES.:

L+ P)x(t = 2] 200 £ (<t ~0) =0, (6)
where

2,06, 2)—— R
Are continuous with neither P nor Q identically zero on any half
line [t,, ), tand o are nonnegative constants, and f :R—— R 18

continuous.

In section 2.2, we obtain two oscillation theorems for the
differential equation:
%[xm FP(1) f(x(g ()|+G(t,x(g (1) -H(t,x(g5(1) =0, (T)
where all the mentioned functions are continuous with uf(u) >0
for u#0, g()<t, for i=1,2,3, and G,H[t,,0)x R—>R with

G#H on R.



The obtained theorems improve and extend some of the results
of [11(b)] . Moreover, in section 2.3, we establish sufficient
conditions for all solutions to be nonoscillatory. In particular, our

results include the work of [10(c)].

In 1995, Li[19] studied the oscillatory behavior of

solutions of the linear differential equation

'

[a(t) x'(0)] +P(")x()=0, (8)
where

a(t) e C'([t,,»),(0,0)), and P(¢) € C([to,), R), 1, 20
The main result of Li [19] is given by the following theorem.

Theorem 1 [19]

Let
D, =d{ts)t> 5= t,},and D= {(t,5):t252 t,}-
Let H eC(D,R) satisfy the following two conditions:
(@) H=(t,0)=0 for t=1,,H(t,s)>0, for t>s521,
(b) H has a continuous and non positive partial derivative on
D, Suppose that i:D—> R is a continuous function with

22 (19)= hit, s WHGs) forall (5.9) €D,
S

If there exists a function f e C'[¢,, ) such that:



