

Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department

Improving Water Retention in Soil

A Thesis

Submitted in Partial Fulfillment of the Requirement for the Degree of

MASTER OF SCIENCE IN CIVIL ENGINEERING

Submitted By

Eng. Mohamed AlMetwally Mohamed ElSayed

B.Sc. in Civil Engineering - Water and Hydraulic Structures – 2018

Faculty of Engineering - Ain Shams University

Supervised by

Prof. Dr. Hoda Kamal Fouad Soussa

Professor of Water Resources
Engineering
Irrigation and Hydraulics Department
Faculty of Engineering
Ain-Shams University

Dr. Ihab Mostafa Fatouh

Associated Professor Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Cairo – Egypt 2020

Ain Shams University

Faculty of Engineering

Irrigation and Hydraulics Department

EXAMINERS COMMITTEE

Name: Mohamed Almetwally Mohamed Elsayed

Thesis: Improving water retention in soil

Degree: Master of Science in Civil Engineering

Name and Affiliation Signature

Prof. Dr. Ahmed Mohamed Ali Yousef

Professor of Geophysics and Groundwater

Desert Research Center

Prof. Dr. Mohamed Mohamed Nour Eldin

Professor of Irrigation and Drainage Engineering Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Prof. Dr. Hoda Kamal Fouad Soussa

Professor of Water Resources Engineering Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Dr. Ihab Mostafa Fatouh

Associated Professor Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Date: 31/10/2020

Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department

SUPERVISOR COMMITTEE

Name: Mohamed Almetwally Mohamed Elsayed

Thesis: Improving water retention in soil

Degree: Master of Science in Civil Engineering

Name and Affiliation Prof. Dr. Hoda Kamal Fouad Soussa Professor of Water Resources Engineering Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University Dr. Ihab Moustafa Fatouh Associated Professor Irrigation and Hydraulics Department Faculty of Engineering

Research Date: //2020

Ain-Shams University

Postgraduate Studies

Authorization Stamp: The thesis is authorized at: / / 2020

College Board Approval / / 2020

University Board Approval / / 2020

Curriculum Vitae

Name Mohamed Almetwally Mohamed Elsayed

Date of Birth 11, August, 1995

Place of Birth Cairo, Egypt

Nationality Egyptian

University Degrees B.Sc. in Civil Engineering, Faculty of Engineering,

Ain Shams University, 2018

Current Position Demonstrator at Hydraulics and Irrigation

Department, Faculty of Engineering, Ain Shams

University

Statement

This thesis is submitted to Ain Shams University for the master's degree in

Civil Engineering (Irrigation and Hydraulics).

The work included in this thesis was carried out by the author at the

Department of Irrigation and Hydraulics, Faculty of Engineering, Ain Shams

University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or a qualification at any

other University or Institution.

Name: Mohamed AlMetwally Mohamed ElSayed

Signature:

Date: 31/10/2020

IV

Acknowledgment

In the beginning, I like to praise God.

I would like to thank from the bottom of my heart, **Prof. Dr. Hoda Kamal Fouad Soussa**, Professor of Water Resources Engineering, Irrigation and Hydraulics Department, Faculty of Engineering, Ain-Shams University, for supervising me in the research and following up with me in all its stages from the beginning. Besides, **Professor Soussa** always helps me to improve myself with her useful suggestions and extremely advocates me to participate in research projects and workshops at which I have passion.

My respect and appreciation to **Dr. Ihab Moustafa**, Associated Professor, Irrigation and Hydraulics Department, Faculty of Engineering, Ain-Shams University, who was very keen on making the research thesis out in the best way and for which I always benefit from his comments and his abiding support.

I would like to express my thanks to **Prof. Dr. Abdel-Tawab Mossa**, Professor of Pesticides (Pesticides Chemistry and Toxicology), National Research Centre, and **Dr. Samia Mostafa**, Associated Professor, Pesticides Chemistry and Toxicology, National Research Centre, for their great advowson and help.

My great thanks and appreciation to the water quality lab staff, Faculty of Engineering, Ain-Shams University, for their evident help to provide me with the available facilities and work environment.

Finally, I wish to express my great thanks and appreciation to my fiancée, family, and friends for their encouragement and bolstering me all the way.

Abstract

Limited water resources in many countries of the world, especially those suffering from arid climate, an increase of local population, and encroachment of refugees, such as in Jordan, Lebanon, and Egypt are threatened with water scarcity. Since agriculture consumes about 82.5% of total water consumption in Egypt. Besides, the Egyptian deserts, which represent about 96% of the total area of Egypt, are mostly sandy soils, which do not retain water and a large part of it seeps down into the deep aquifer. So, the optimal use of agricultural water realizing the highest irrigation efficiency is mandatory. This study is physicalbased model research divided into two parts. The first part is to produce cellulose-based superabsorbent hydrogels extracted from agricultural waste to be used as additives to increase the water retention of the soil. That was produced in the framework of the research to simply obtain the hydrogel using the minimum amount of chemicals and energy. The research results proved that the best process owing to environmental aspect and produced yield can be attributed to the production of the hydrogel from the agricultural waste was the use of 0.5 mole of potassium hydroxide (1 gm to 10 mL) at 90°C for 60 minutes for the extraction of the cellulose that was used with 1.5% potassium persulfate as initiator, 0.25% NN-Methylenebisacrylamide as a crosslinker, and acetic acid for neutralization to produce the hydrogels. Moreover, hydrogels and commercial products underwent laboratory tests (Infrared Spectroscopy with Fourier Transform, Energy Dispersed X-ray analysis, and Scanning Electron Microscopy). Which proved that Crude-gel is the best alternative in terms of the balance between increasing soil moisture retention taking into account environmental considerations. The other part is to apply different techniques for

improving soil water retention. Cylindrical plastic pots with depth 15 cm had been used as a bench-scale model, to simulate the water soil movement and ways to increase soil properties to ensure a larger water retention index. Within this work, soils have been sampled from different areas, to simulate the behavior of arable lands, under different water retention techniques. All soil samples (except for three control samples) surface layers have been mixed with additives, mulched, or separated by a physical barrier from the deep soil layers. Water retention has been measured using the gravimetric method of determining soil moisture content by oven drying, as well as the cultivated plants have been monitored to measure the impact on plant growth and irrigation efficiency. Subsequently, the techniques used to select the best alternatives were compared and found that the use of powdered rice straw and wheat straw as additives to the sandy soils can increase their water holding capacity by 165% and 203% respectively when they added with 30% of the total soil layer volume. Moreover, soil water retention increases with the fineness of the straw. Furthermore, the cellulose extracted from rice straw can be attributed to increasing the water holding capacity in sandy soils. Besides, the use of mulch can significantly decrease the evaporation and soil surface erosion resulting in improvements in soil water retention with 88%.

Keywords: Agricultural Waste, Environmentally Friendly, Soil Water Conservation, Sustainability.

Table of Contents

List of	Figures		XII
List of	Tables		XVI
List of	Abbrevi	iations	XVII
List of	Symbol	s	XIX
Chapte	er 1: INT	TRODUCTION	1
1.1	Preface	·	1
1.2	Problen	n statement	3
1.3	Researc	ch Objectives	3
1.4	Thesis S	Structure	4
Chapte	er 2: TH	EORETICAL BACKGROUND	5
2.1	Introdu	ction	5
2.2	Types o	of Soil Water	6
2.2	2.1 Soi	il Water Holding Capacity	8
	2.2.1.a	Soil texture	8
	2.2.1.b	Soil structure	10
	2.2.1.c	Organic matter	11
	2.2.1.d	Soil salt content	11
2.3	Soil Cla	assification	12
2.4	Soil Wa	ater-Plant Relationship	14
2.4	4.1 Soi	il Water Content	14

.2.	4.1a	Soil-water-plant limits	14
2.4	4.1.b	Plant available moisture curve	16
2.4	4.1.c	Derived soil variables	17
2.4.2	Soi	l Water Movement (Water flows in unsaturated soils)	19
2.4.3	Pla	nt Water Extraction	20
2.4.4	Soi	l Intake and Infiltration Characteristics	21
2.4.5	Soi	l Moisture Content Measurement	22
Chapter 3	: LIT	ERATURE REVIEW	24
3.1 Int	troduc	ction	24
3.2 So	il and	I Irrigation Water in the Deserts of Egypt	25
3.3 Pro	eviou	s Techniques for Improving Soil Water Retention	29
3.3.1	Bur	ried Perforated Clayey Pots	29
3.3.2	Phy	sical Barriers	30
3.3	3.2.a	Clayey layer	30
3.3	3.2.b	Asphalt layer	30
3.3	3.2.c	Polyethylene sheets	31
3.3.3	Mix	xing Soil with Additives	33
3.3	3.3.a	Natural Heavy Soils	33
3.3	3.3.b	Synthetic Additives	33
3.3	3.3.c	Agricultural Waste	34
3.3.4	Mu	lch Soil Surface	35

3.4 Use	e of Superabsorbent Cellulose-based Hydrogel for Improving Soi	1
Water Re	etention	.35
3.5 The	e Output From The Literature	.43
Chapter 4:	EXPERIMENTAL WORK	.45
4.1 Intr	oduction	.45
4.2 Sup	perabsorbent Hydrogel Preparation	.46
4.2.1	Materials and Chemicals	.46
4.2.2	Tools and Instruments	.46
4.2.3	Methods	.50
.4.2	2.3a Rice Straw Preparation	.50
.4.2	2.3b Crude Cellulose Extraction	.51
4.2	.3.c Bleached Cellulose Preparation	.55
4.2	.3.d Alpha-Cellulose Preparation	.55
4.2	.3.e Hydrogel Production	.56
4.3 Soi	l Water Retention Techniques Application	.58
4.3.1	Materials	.58
4.3.2	Soil Texture Classification	.59
4.3.3	Soil Samples Preparation	.62
4.3.4	Application of Different Techniques to Improve Soil Wa	ater
Retenti	ion	.71
4.3.5	Determination of Soil Sample's Moisture Content Limits	.74
Chapter 5:	RESULTS AND DISCUSSION	.76

5.1	Sup	berabsorbent Cellulose-based Hydrogel	76
5.1	1.1	Extraction of Crude Cellulose	76
5.1	1.2	Bleached Cellulose	78
5.1	1.3	Alpha-Cellulose	78
5.1	1.4	Hydrogel Characterization Tests	79
	5.1.4	4.a Fourier Transform Infrared Spectroscopy (FTIR)	79
	5.1.4	4.b Energy Dispersive X-ray Analysis (EDX)	82
	5.1.4	4.c Scanning Electron Microscope (SEM)	85
5.2	Wat	ter Holding Capacities of Soil Samples	88
5.2	2.1	Soil Sample's moisture Limits	88
5.2	2.2	Soil Sample's Volumetric Water Content	90
Chapte	er 6:	CONCLUSIONS AND RECOMMENDATIONS	103
6.1	Con	nclusions	103
6.2	Rec	commendations for Further research	104
REFEI	REN	CES	106

List of Figures

Figure 2-1: Soil physical components [8]	6
Figure 2-2: Different types of soil water	6
Figure 2-3: Types of soil water	7
Figure 2-4: Different soil types and available water holding [9]	8
Figure 2-5: Relation between SSA and Soil moisture content at -15 bar [10]	9
Figure 2-6: Relation between SSA and Soil moisture content at -0.1 bar [10]	.9
Figure 2-7: Soil structure types [12]	10
Figure 2-8: FAO triangle for soil texture classification	13
Figure 2-9: Soil moisture content limits [9]	15
Figure 2-10: Soil moisture retention curve (pF curve) [18]	16
Figure 2-11: Unsaturated soil hydraulic conductivity with volumetric water	
content [21]	19
Figure 2-12: Plant root water extraction profile [9]	20
Figure 2-13: Typical infiltration rate curve [9]	.22
Figure 2-14: Digital Moisture Meter	23
Figure 3-1: The soil map of Egypt [25]	.25
Figure 3-2: New reclamation lands based on the data of the Ministry of	
Agriculture and Land Reclamation	28
Figure 3-3: Olla irrigation system	29
Figure 3-4: Volumetric water content gradient of (SWRT) [24]	.32
Figure 3-5: Cellulose extraction from rice straw [58]	38
Figure 3-6: Water retention by different polymer compositions [62]	42
Figure 4-1: Digital thermometer	47
Figure 4-2: Water purification system	47

Figure 4-3: Ultrasonic processor	48
Figure 4-4: Water bath	48
Figure 4-5: PH meter	48
Figure 4-6: Class A laboratory glasswares	49
Figure 4-7: Powdered rice straw preparation	50
Figure 4-8: Extraction of crude cellulose procedure	54
Figure 4-9: Ice bath to Perform the reaction at 20°C	55
Figure 4-10: Rice straw refluxing	57
Figure 4-11: Crude-Cellulose refluxing	57
Figure 4-12: Alpha-Cellulose refluxing	57
Figure 4-13: Different hydrogel products	57
Figure 4-14: Petrified Forest Protectorate, Cairo, Egypt	58
Figure 4-15: Sieve analysis	59
Figure 4-16: Hydrometer	59
Figure 4-17: Sample 1 grading	60
Figure 4-18: Sample 2 grading	60
Figure 4-19: Sample 3 grading	61
Figure 4-20: Sample 25 preparation (Physical barrier at 5 cm depth)	69
Figure 4-21: Sample 26 preparation (Physical barrier at 10 cm depth)	69
Figure 4-22: Sample 27 preparation	70
Figure 4-23: Soil Sampling Procedure	72
Figure 4-24: Soil water moisture determination process	73
Figure 5-1: Crude cellulose	77
Figure 5-2: Bleached cellulose	78
Figure 5-3:Alpha-Cellulose	78
Figure 5-4: Ligno FTIR	80

Figure 5-5: Crude FTIR	80
Figure 5-6: Alpha FTIR	81
Figure 5-7: Commercial FTIR	81
Figure 5-8: Ligno-gel EDX	83
Figure 5-9: Crude-gel EDX	83
Figure 5-10: Alpha-gel EDX	83
Figure 5-11: PAM EDX	84
Figure 5-12: CMC EDX	84
Figure 5-13: Ligno-gel SEM	85
Figure 5-14: Crude-gel SEM	86
Figure 5-15: Alpha-gel SEM	86
Figure 5-16: CMC SEM	87
Figure 5-17: PAM SEM	87
Figure 5-18: Sand Volumetric Water Content	90
Figure 5-19: Loam Volumetric Water Content	90
Figure 5-20: Silt Loam Volumetric Water Content	91
Figure 5-21: Control Samples	91
Figure 5-22: Group A Soil Grading	92
Figure 5-23: Mulch	93
Figure 5-24: Soil mixed with rice straw	94
Figure 5-25: Agricultural waste	95
Figure 5-26: Soil bean pests	96
Figure 5-27: Bleached Cellulose	96
Figure 5-28: α-Cellulose	97
Figure 5-29: Loam mix	98
Figure 5-30: Silt Loam mix	98